United States Department of Agriculture Agricultural Marketing Service | National Organic Program Document Cover Sheet https://www.ams.usda.gov/rules-regulations/organic/national-list/petitioned

Document Type:

□ National List Petition or Petition Update

A petition is a request to amend the USDA National Organic Program's National List of Allowed and Prohibited Substances (National List).

Any person may submit a petition to have a substance evaluated by the National Organic Standards Board (7 CFR 205.607(a)).

Guidelines for submitting a petition are available in the NOP Handbook as NOP 3011, National List Petition Guidelines.

Petitions are posted for the public on the NOP website for Petitioned Substances.

⊠ Technical Report

A technical report is developed in response to a petition to amend the National List. Reports are also developed to assist in the review of substances that are already on the National List.

Technical reports are completed by third-party contractors and are available to the public on the NOP website for Petitioned Substances.

Contractor names and dates completed are available in the report.

Crops

Identification of Petitioned Substance

1	Chemical Names:	Other Name:
2	Kasugamycin	Kasugamycin hydrochloride hydrate
3	2-amino-2-[(2R,3S,5S,6R)-5-amino-2-methyl-6-	Kasugamycin monohydrochloride
4	[(2R,3S,5S,6S)-2,3,4,5,6-	
5	pentahydroxycyclohexyl]oxyoxan-3-	Trade Names:
6	yl]iminoacetic acid (IUPAC name)	Kasumin 2L, Kasumin 4L
7		
8	3-O-[2-amino-4-[(carboxyiminomethyl)amino]-	CAS Numbers:
9	2,3,4,6-tetradeoxy-a-D-arabino-hexopyranosyl]-	Kasugamycin (6980-18-3)
10	D-chiro-inositol	Kasugamycin monohydrochloride (19408-46-9)
11		
12		Other Codes:
13		Kasugamycin Pub Chem CID 65174
14		
15		
16	Summary of	Petitioned Use
17	·	
18	The National Organic Program (NOP) was petitioned	d to add kasugamycin as an allowed synthetic to the
19	synthetic substances National List at 7 CFR §205.601.	
20	5	e hydrate. The specific petitioned use is for control of
21	fire blight caused by <i>Erwinia amylovora</i> in apples, pea	
22	Commission 2020).	its, and other point mans (camornia ripple
23	Commission 2020).	
23		
25		

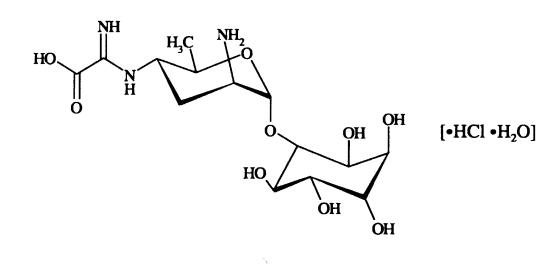
Characterization of Petitioned Substance

28 <u>Composition of the Substance:</u>

29 Kasugamycin is an aminoglycoside containing the sugar inositol. Kasugamycin hydrochloride is isolated

30 during the manufacture of kasugamycin. Kasugamycin hydrochloride hydrate is the registered active

31 ingredient in the Kasumin brand formulations. The structure of kasugamycin hydrochloride hydrate is


32 shown in Figure 1 (U.S. EPA 2005). The inositol moiety is on the right-hand side of the illustration.

33

26

27

34 Figure 1. Structure of Kasugamycin Hydrochloride Hydrate

35

36 Source or Origin of the Substance:

- 37 Kasugamycin is obtained by aerobic fermentation of the microorganism *Streptomyces kasugaensis*. This
- 38 microorganism was originally discovered near the Kasuga Grand Shrine in Nara City, Japan. The active
- 39 ingredient kasugamycin hydrochloride hydrate is isolated from kasugamycin fermentation product
- 40 (Umezawa et al. 1967).
- 41

42 **Properties of the Substance:**

43 Kasugamycin is a colorless solid at room temperature and normal atmospheric pressure. The free base

- 44 melts with decomposition at 214–216°C. The molecular formula is $C_{14}H_{25}N_3O_9$ and the molecular weight is 45 379.36 g/mol (U.S. EPA 2005; PubChem 2020a).
- 46

47 Kasugamycin hydrochloride is composed of white crystals that melt with decomposition at 236–239°C. The 48 molecular formula is $C_{14}H_{26}CIN_3O_9$ and the molecular weight is 415.82 g/mol. The hydrochloride hydrate 49 has a molecular weight of 433.8 g/mol. The bulk density of the hydrochloride hydrate is 0.43 g/ml at 50 24.5°C.

51

The hydrochloride is soluble in water with a maximum solubility of about 228 g/liter at pH 7. It is more soluble in alkaline solutions. The Environmental Protection Agency (EPA) reports 207 g/liter at pH 5, 228 g/liter at pH 7, and 438 g/liter at pH 11 (U.S. EPA 2005). Kasugamycin hydrochloride hydrate is the active ingredient in the Kasumin formulations (U.S. EPA 2018).

56

Kasugamycin hydrochloride hydrate is insoluble in ethanol, acetone, ethyl acetate, chloroform, and
benzene and sparingly soluble in methanol. It has three ionizable groups, carboxyl group, cyclic primary
amine, and secondary amine, with pKa values of pKa1 = 3.23, pKa2 = 7.73 and pKa3 = 11.0. The pKa1

- 60 refers to ionization of a carboxyl group. The pKa2 measures ionization of the cyclic primary amine. The
- 61 pKa3 measures ionization of the secondary amine (U.S. EPA 2005).
- 62

63 When the hydrochloride is dissolved in water, the carboxyl group ionizes, making the solution acidic.

- 64 Aqueous solutions (1 percent wt/vol) of the hydrochloride are acidic with a pH of 4.35 at 24.5°C. It is much
- more soluble in alkaline solutions. Raising the pH from 5 (207 g/liter) to 9 (438 g/liter) more than doubles
- 66 solubility (U.S. EPA 2005). More alkaline solutions, however, tend to be unstable, and undergo slow

67 decomposition. See *Evaluation Question* #4 for more information.

- 68
- 69 Kasugamycin hydrochloride has relatively low volatility with a vapor pressure of <0.013 mPa at 25°C
- 70 (about 0.13 atmospheres). Dried residues of the hydrochloride do not volatilize readily from soil into air.
- 71 The hydrochloride is about 100 times more soluble in water than octanol with log Kow (i.e., the

	Technical Evaluation Report	Kasugamycin	Crops
2 3		in octanol divided by the concentration Kow = -5.75. The higher solubility of th	,
1		idency for bioaccumulation in aquatic c	
-)	<i>Question #6</i> for more information.	lucity for bioacculturation in aquate e	rganishis. See Evaluation
, ,)	Question no for more mornation.		
7	In water between pH 5–9, kasugam	ycin hydrochloride solutions form a zw	vitterion. This means the
3		and the proton is captured by the prim	
<i>)</i>		does not volatilize readily from water	5
)	<i>Question</i> #4 for more information.	aces not volatilize readily from water	(0.0. 11112010). See Louinanton
l	~		
2	Specific Uses of the Substance:		
3	-	etition is for the control of fire blight cau	used by <i>Erwinia amylovora</i> in
1		s. In a small-scale trial with Bartlett pea	e e
5		with Erwinia reduced disease incidence	0, 11
6	(Adaskaveg et al. 2009).		J
7	· · · · · · · · · · · · · · · · · · ·		
8	In commercial California pear orch	ards from 2006–2010, kasugamycin app	lied three to six times at 100 pp
)		t reduction of fire blight disease incider	
)	inoculated with Erwinia. In fields n	ot inoculated with <i>Erwinia</i> , there was an	n 80–90 percent reduction in
l	disease incidence. Kasugamycin wa	as more effective than oxytetracycline, a	and it worked equally well on
2	isolates either resistant or not resist	ant to streptomycin. More than four ap	plications led to phytotoxicity
3	(Adaskaveg et al. 2009; Adaskaveg	et al. 2011).	
1			
5	In Erwinia-inoculated Bartlett pear	and Golden Delicious apple orchards ir	n Oregon, two applications of
5	kasugamycin at 100 ppm reduced of	lisease incidence 93 percent in pears an	d 77 percent in apples (Johnson
7	et al. 2008). In the most favorable ca	ase among Jonathan or Gala apples in N	Jew York orchards, 100 ppm
8		before and the day after inoculation wit	ch Erwinia. Disease control after
9	application was 91 percent (Sundin	2014).	
0			
1	Kasugamycin has also been used to	o control other plant diseases that are de	escribed in <i>Historic Use</i> .
2			
3	Approved Legal Uses of the Subst		
4		nin 2L and Kasumin 4L for control of pl	
5		bles and pears. These are formulations of	containing the active ingredient
6 7	kasugamycin hydrochloride hydra	te (U.S. EPA 2018; U.S. EPA 2020).	
3	Action of the Substance:		
))		nhibits bacterial protein synthesis. This	process is discussed further in
)	Evaluation Question #5.	inibits bacterial protent synthesis. This	process is discussed further in
L	Louination Question no.		
2	Combinations of the Substance:		
3		a component of, nor used in combination	on with another substance on th
1		formulations are Kasumin 2L and Kasu	
5		c production. These contain surfactants	
5		lowed as inerts under 7 §CFR 205.601(n	
7		er states that the manufacturer is willing	
3	, I	mycin is approved (California Apple C	-
9			,
0			
,		Status	
Ĺ			
L [2			
. [Historic Use:	zawa and his colleagues produced kası	

with a different organism, *Streptomyces kasugaspinus*, was patented later (Umezawa et al. 1907).

127	
128	Tamamura and Sato (1999) found "that kasugamycin possesses weak or almost no antibacterial activity
129	against common pathogenic bacteria in human or animals." According to Levitan (1967), "kasugamycin
130	was noted to be more effective against <i>Pseudomonas</i> species than against some of the other bacteria tested,
131	results were nevertheless uniformly disappointing" (753).
132	
133	The earliest application in agriculture was in 1965 as an antibiotic for the pathogen Piricularia oryzae, which
134	causes rice blast disease (Masukawa et al. 1968; Umezawa et al. 1974). Kasugamycin is used in Mexico to
135	control bacterial rot, Erwinia atroseptica, and leaf mold, Cladosporum fulvum, on tomato. It is also used to
136	control bacterial spot caused by Xanthomonas campestris pv. vesicatoria on tomato and pepper (U.S. EPA
137	2005).
138	
139	The EPA established tolerances for kasugamycin on August 29, 2014 of 0.20 ppm for pome fruit (Fed Reg
140	2014). Current tolerances for kasugamycin set by the FDA at 21 §CFR 180.614 are 0.04 ppm for fruiting
141	vegetables and 0.20 ppm for pome fruit.
142	
143	The technical grade active ingredient, kasugamycin hydrochloride hydrate, was registered with the EPA on
144	September 8, 2014 with the registration number 66330-403 (U.S. EPA 2014). The formulation Kasumin 2L
145	containing two percent kasugamycin was registered March 1, 2018 with registration number 66330-404
146	(U.S. EPA 2018). Kasumin 4L containing four percent kasugamycin was registered January 15, 2020 with
147	the registration number 66330-436 (U.S. EPA 2020).
148	(in registration number 66666 166 (0.5. 11 11 2020).
149	Kasumin 4L and Kasumin 2L were registered with a number of restrictions including those that prohibit
150	application where animals are grazing or in areas where crops have been fertilized with animal or human
151	waste. Users are also required to follow a resistance management plan. Applications are limited to four per
152	year with the sole exception of California, where the limit is two applications per year (U.S. EPA 2020).
153	year what the sole exception of california, where the limit is two applications per year (0.5. 1177 2020).
154	Kasumin registration was for diseases of cherry, pome fruit and walnuts. Diseases of cherry included
155	bacterial blast and bacterial canker caused by <i>Pseudomonas syringae pv. syringae</i> . For cherry, the preharvest
156	interval is 30 days. It was registered for fire blight, <i>Erwinia amylovora</i> , on pome fruit including apple and
157	pear. For fire blight, there is a 90-day preharvest interval. For walnut blight, caused by <i>Xanthomonas</i>
158	<i>campestris pv. juglandis,</i> the preharvest interval is 100 days (U.S. EPA 2020).
159	<i>cumpetitie pet jugumule, the preside vest interval to rob days (0.5. http://doi.org/10.100/0000000).</i>
160	Kasumin 2L containing the active ingredient kasugamycin hydrochloride hydrate was registered in
161	California on January 1, 2018 for diseases of almond, apple, cherry, pear, and walnut (CA DPR 2020).
162	cultorina on january 1, 2010 for alseabed of annotal, apple, cherry, pear, and wantar (err D1 (2020).
163	Organic Foods Production Act, USDA Final Rule:
164	Kasugamycin is not mentioned in the Organic Foods Production Act (OFPA), nor is it listed at 7 CFR
165	\$205.601, synthetic materials allowed for organic crop production. It is also not listed at 7 CFR \$205.603 for
166	livestock production, nor at 7 CFR §205.605 for processing.
167	
168	International
169	Canada – CAN/CGSB-32.311-2020, Organic Production Systems, Permitted Substances Lists
170	Kasugamycin is not listed in Table 4.2, Substances for Crop Production, nor in the alphabetized list of
171	materials (Canada 2020).
172	http://publications.gc.ca/collections/collection_2020/ongc-cgsb/P29-32-311-2020-eng.pdf
173	
174	CODEX Alimentarius Commission, Guidelines for the Production, Processing, Labelling and Marketing of
175	Organically Produced Foods (GL 32-1999)
176	Kasugamycin is not listed in the Codex Alimentarius of Organically Produced Foods.
177	http://www.codexalimentarius.org/standards/list-standards/en/?no_cache=1
178	http://www.codexalimentarius.org/download/standards/360/cxg_032e.pdf
179	
180	European Economic Community (EEC) Council Regulation, EC No. 834/2007 and 889/2008
181	Kasugamycin is not listed in European Community Council Regulation No. 834/2007 (ECC 2007).

182

183 184 185	Kasugamycin is not listed in European Community Council Regulation No. 889/2008. Specifically, it is not listed in Annex II, pesticides-plant protection products, referred to in Article 5(1). It is also not listed in Annex VIII, certain products and substances for use in processed organic food, referred to in Article 27(1)(a) (ECC 2008)
186 187 188	27(1)(a) (ECC 2008). http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:250:0001:0084:EN:PDF
189 190 191 192	<i>Japan Agricultural Standard (JAS) for Organic Production</i> Kasugamycin is not listed in the Japanese Agricultural Standard for Organic Plants. It is specifically not listed in Table 2, Substances for Plant Pest and Disease Control, nor in Table 4 Chemical Agents (Japan 2017).
193 194 195	<u>http://www.maff.go.jp/e/jas/specific/criteria_o.html</u> <u>http://www.maff.go.jp/e/policies/standard/jas/specific/criteria_o.html</u>
196 197	International Federation of Organic Agriculture Movements (IFOAM) – Organics International Norms
198 199 200 201	Kasugamycin is not listed in Appendix 3, Crop Protectants and Growth Regulators (IFOAM 2014). http://www.ifoam.bio/en/ifoam-norms
202	Evaluation Questions for Substances to be used in Organic Crop or Livestock Production
203	
204 205 206 207	<u>Evaluation Question #1: Indicate which category in OFPA that the substance falls under:</u> (A) Does the substance contain an active ingredient in any of the following categories: copper and sulfur compounds, toxins derived from bacteria; pheromones, soaps, horticultural oils, fish emulsions, treated seed, vitamins and minerals; livestock parasiticides and medicines and production aids including
208 209	netting, tree wraps and seals, insect traps, sticky barriers, row covers, and equipment cleansers? (B) Is the substance a synthetic inert ingredient that is not classified by the EPA as inerts of toxicological $(i - EPA + i) = (2 + i) $
210 211 212	concern (i.e., EPA List 4 inerts) (7 U.S.C. § 6517(c)(1)(B)(ii))? Is the synthetic substance an inert ingredient which is not on EPA List 4, but is exempt from a requirement of a tolerance, per 40 CFR part 180?
213 214 215 216	Kasugamycin is a bacterial toxin produced by <i>Streptomyces kasugaensis</i> . It is not a synthetic inert ingredient (Umezawa et al. 1967; California Apple Commission 2020).
217 218 219 220 221	<u>Evaluation Question #2</u> : Describe the most prevalent processes used to manufacture or formulate the petitioned substance. Further, describe any chemical change that may occur during manufacture or formulation of the petitioned substance when this substance is extracted from naturally occurring plant, animal, or mineral sources (7 U.S.C. § 6502 (21)).
222 223 224 225 226 227	Kasugamycin is manufactured by aerobic fermentation of <i>Streptomyces kasugaensis</i> . In a typical fermentation, after inoculation with the microorganism, 100 liters of sterilized growth medium is fermented for 48 hours at 28°C at about pH 7.4. The solution is aerated at 100 liters/minute and agitated at 200 rpm. This solution is then added to 1,400 liters of the same growth medium. After 90 hours, the pH is 7.2 and 530 micrograms/ml of kasugamycin is produced (Umezawa et al. 1967).
228 229 230 231 232 233	To isolate the product, solids in the fermentation medium are removed by centrifugation or filtration. The pH is adjusted to 7.0 and the liquid is treated with activated charcoal to remove impurities. The charcoal is extracted with butanol and water to remove impurities, then kasugamycin is eluted as the hydrochloride from the charcoal with pH 2 hydrochloric acid solution. This solution is freeze dried to a crude powder containing kasugamycin hydrochloride (Umezawa et al. 1967; California Apple Commission 2020).
234 235 236	An aqueous solution of the powder is applied to a column of cationic ion exchange resins (IRC-50) to remove basic impurities. The aqueous effluent containing kasugamycin hydrochloride is added to a column of IRC-120 resin where it is adsorbed. It can be eluted with aqueous ammonia at cold temperatures

(15°C), and the effluent is subsequently neutralized with HCl to pH 6.6. The eluate is concentrated to
 dryness or freeze dried to obtain kasugamycin hydrochloride as a crude powder. The eluate can also be

- dryness or freeze dried to obtain kasugamycin hydrochloride as a crude powder. The eluate can also be
 concentrated in a vacuum, and kasugamycin hydrochloride of 90 percent purity can be obtained as crystals
 by the addition of ethanol (Umezawa et al. 1967).
- 241

242Evaluation Question #3: Discuss whether the petitioned substance is formulated or manufactured by a243chemical process, or created by naturally occurring biological processes (7 U.S.C. § 6502 (21)).

244

Kasugamycin is created by a naturally occurring biological process, the fermentation of *Streptomyces kasugaensis* (Umezawa et al. 1967). The extraction and purification of kasugamycin from the fermentation

- broth involves elution with hydrochloric acid, yielding the salt form of crystalline kasugamycin
- 248 hydrochloride. Although the process for manufacturing kasugamycin is biological, kasugamycin is
- chemically isolated as the hydrochloride. This chemical change is not created by a naturally occurring
- 250 biological process or created through heating or burning biologic matter. Questions of chemical change,

and processes used to create that change, are part of the criteria used in NOP Guidance 5033-1 *Classification* of Materials as Synthetic or Nonsynthetic (USDA NOP 2016).

253

Evaluation Question #4: Describe the persistence or concentration of the petitioned substance and/or its by-products in the environment (7 U.S.C. § 6518 (m) (2)).

Kasugamycin is characterized as moderately persistent to persistent (U.S. EPA 2013). A major source of
degradation is aerobic microbial metabolism in soil with a half-life of 43-73 days. About four percent
remains after a year. Because laboratory studies used only one soil type, the EPA uses a 219-day soil halflife in persistence calculations (U.S. EPA 2013).

261

Both aerobic and anaerobic degradation occurs. Aerobic degradation is faster than anaerobic. Typical
aerobic half-life in water is seven days and half-life in sediment is 108 days. Anaerobic half-life was 32 days
in water and 141 days in sediment (NYS 2015; U.S. EPA 2013).

Hydrolysis in water is very slow, especially in acidic conditions (NYS 2015). Kasugamycin moves freely in
sandy soil, less so in clay soils. It is likely to move both into surface water and ground water, but
movement into ground water is less likely (U.S. EPA 2013). Because of soil movement, field dissipation is
faster than molecular degradation seen in the laboratory. Field dissipation half-life in soil is 5.7 to 12.3 days.
It does not volatilize readily from water or soil. Half-life of kasugamycin in the gas phase is 1.6 hours (NYS
2015).

272

The major metabolites are kasugamycinic acid (CAS No. 6001-03-2) and kasuganobiosamine (CAS No.
6189-93-1). Kasugamycinic acid (CAS No. 6001-03-2) results from conversion of the imino group of
kasugamycin to a carboxylic acid. Kasuganobiosamine (CAS No. 6189-93-1) results from loss of the acetic
acid amide group leaving the free amine. Kasuganobiosamine has two free amino groups (U.S. EPA 2013).

276

These metabolites are also persistent. About 3.1 percent of the acid was left after 180 days in

aerobic/anaerobic rice paddy systems. About 28.7 percent was left after about a year in anaerobic aquatic

laboratory studies. About 44.7 percent of the amine was left after a year in the anaerobic aquatic studies.

The amine was destroyed quickly by aqueous photolysis (3.2 percent left after 18.9 days); the acid

metabolite was more persistent (48.5 percent left after 18 days (U.S. EPA 2013). Details on degradation are
 provided below.

283 284

285 Mobility in Soil

286 Kasugamycin may be less persistent in the field than laboratory experiments suggest. Field dissipation is

more rapid, with a soil half-life ranging from 5.7–12.3 days. Kasugamycin did not leach in eastern soil

below 15 cm (6 in); in California soil, leachate traveled less than 30 cm (12 in) (NYS 2015; U.S. EPA 2013).

- The big difference between laboratory persistence (43–75 days half-life) and field persistence (12.3 days) is
- 290 that field measurements include movement from the application site, whereas lab experiments are
- 291 measuring degradation of the molecule.

292	
293	Kasugamycin moves freely in soil, but there is a range depending on the soil type. The Koc (soil adsorption
294	coefficient) for sandy soil was 10 ml/g; for clay loam, 364 ml/gram. The larger the K _{oc} , the stronger
295	binding to soil. Up to five percent of applied amounts could run off into surface water (NYS 2015).
296	binding to soli. Op to rive percent of upplied uniounts could full of find surface water (1915 2015).
297	Using a colubility of 228 g/liter on application rate of 0.226 lbs/acro/ware on abcorntion coefficient K of
	Using a solubility of 228 g/liter, an application rate of 0.336 lbs/acre/year, an absorption coefficient K_{oc} of 245 ml/s and a half life of 72 days modeling superimenta are disted the maximum energy that half life of 72 days are delined to be a superimentation of the second s
298	345 ml/g, and a half-life of 73 days, modeling experiments predicted the maximum amount leached from soil as 0.038 ppb. According to the modeling experiment, kasugamycin is not a likely ground water threat
299 300	(NYS 2015). However, the metabolites range from moderate to highly mobile, and have the potential to be
301	found in drinking water (U.S. EPA 2013).
302	Tourid in drinking water (0.5. EFA 2015).
303	The EPA (2012) estimates that the acute drinking water concentration of kasugamycin is 0.011562 ppm, the
304	chronic drinking water concentration is 0.00178, and the groundwater concentration is 0.000116 ppm.
305	chione aniking water concentration is 0.00170, and the groundwater concentration is 0.000110 ppm.
306	Persistence in Water
307	In laboratory experiments, kasugamycin degrades in water and sediment by both aerobic and anaerobic
308	processes. The aerobic half-life in water is 6.9 days, and the aerobic half-life in sediment is 108 days. In
309	anaerobic systems, the half-life in water was 32 days and in sediment, 141 days (NYS 2015).
310	
311	In one experiment, kasugamycin showed an anaerobic aquatic half-life of 105 days. Metabolites were
312	kasugamycinic acid and kasuganobiosamine (NYS 2015). In another experiment, aerobic aquatic half-life
313	ranged from 103 to 147.5 days. Kasugamycinic acid was the major species (NYS 2015).
314	
315	Kasugamycin slowly degrades by hydrolysis in water. Half-life in acidic conditions ranges from 462–630
316	days. At pH 7, half-life is 80 days, and under alkaline conditions (i.e., pH 11) it is 11.4 days (NYS 2015).
317	
318	Bioaccumulation in aquatic organisms is low. Kasugamycin is much more soluble in water than octanol
319	(PubChem 2020a; U.S. EPA 2005).
320	
321	Persistence in Air
322	Kasugamycin has a low vapor pressure and is not volatile from soil surfaces. In the air, kasugamycin exists
323	both in gaseous and particulate phases. Photochemical half-life in the gas phase is 1.6 hours (PubChem
324	2020a).
325 326	Kasugamusin is not expected to veletilize from water because it is a quitterion from pH 5.0. This means
320 327	Kasugamycin is not expected to volatilize from water because it is a zwitterion from pH 5–9. This means the carboxylic acid is extensively ionized, and the hydrogen ion forms a salt with the amine group of
328	kasugamycin (PubChem 2020a).
329	Kasuganiyen (Lubenen 2020a).
330	Persistence on Fruit
331	About half the amount applied to foliage ends up on the soil and non-target surface vegetation. Residues
332	on fruit decrease 10-fold in 27–32 days. This fact means that with a 90-day preharvest interval, residues at
333	harvest time on fruit are 1/1000 of that originally applied (NYS 2015; PubChem 2020a).
334	
335	The NOSB Crops Subcommittee is interested in possible kasugamycin residues on fruit, and posed this
336	question:
337	
338	How does timing affect potential for residue in fruit at harvest? And are there any residues in fruit at harvest?
339	Kasugamycin is applied for fire blight on apples and pears during bloom. There is a 90-day preharvest
340	interval. According to PubChem (2020a), there is a 10-fold decrease in residues every 27–32 days. From the
341	PubChem data, residues in 90 days are roughly 1/1000 of that applied (PubChem 2020a). The application
342	rate is 100 ppm (parts per million), and the residues at harvest should be about 0.1 ppm. The detectable
343	limit of kasugamycin in apples is about 6 microgram/kg or 6 ppb. The maximum residues allowed, or
344	tolerance, is 0.2 ppm. Measured residues at harvest should be between 6 ppb (parts per billion) and 0.2
345	ppm (Fed Reg 2014; Wang et al. 2017).
346	

347 Much of the actual residue information for kasugamycin is unpublished proprietary information (U.S. EPA 348 2005). Kasugamycin is not currently included in the USDA Pesticide Data Program residue monitoring 349 database (USDA 2019). A search of PubChem on Sept 22, 2020 for kasugamycin residues on apples 350 returned no results. Residues can be estimated from tolerances (Fed Reg 2014) and calculated exponential 351 decay of applied dose with time, as shown above (PubChem 2020a). 352 353 The maximum residue in apples and pears allowed at harvest is 0.2 ppm, or 0.2 mg/kg (Fed Reg 2014). 354 Likely consumption is no more than a pound of apples or pears a day, or 0.5 kg/day. A pound of apples 355 would contain a maximum 0.1 mg of kasugamycin. If a 10-kg (22 lb) child ate a pound of apples, exposure 356 would be 0.01 mg/kg body weight. The EPA Reference Dose is 0.113 mg/kg/day (NYS 2015). 357 Consumption of less than this amount is presumed to cause no problems. A likely worst-case exposure 358 would be about 1/10 the reference dose if the residues equaled tolerance levels. 359 The application rate of kasugamycin to apples and pears is 100 ppm. From PubChem data, residues are 360 361 likely 1/1000 of that in 90 days. Residues should be no more than 0.1 ppm at 90 days. This is one half the 362 tolerance of 0.2 ppm. A likely worst-case consumption in the case of 10-kg child would be about $1/20^{th}$ the reference dose (PubChem 2020a). 363 364 Key to residue levels is the time between the last spray and harvest. The minimum time between the last 365 kasugamycin application and harvest is 90 days, but according to the variety, fruit can be harvested more 366 than 90 days after the last spray. No kasugamycin sprays can be applied after petal fall and fruit set (U.S. 367 EPA 2018). Varieties such as Fuji and Granny Smith that take longer to mature after fruit set should have 368 369 fewer residues than Gala or Gravenstein that mature closer to the date of the last spray. 370 371 Streptomycin, another fire blight control in apple, pear, and other pome fruit production, is also applied at 372 100 ppm. In one study the highest concentration of streptomycin found on apples after three sprays was 373 0.018 mg/kg of fruit. The highest concentration of residues was in the apple core (Stockwell 2014). If 374 similar residues are found with kasugamycin, this is 0.018 ppm or 0.02 ppm. If a 10-kg child ate a pound of 375 apples, exposure would be 0.001 mg/kg body weight, about 1/100 of the reference dose. 376 377 Residues at harvest should be between 0.02 and 0.20 ppm, and result in worst case exposures between 1/10 378 and 1/100 of the reference dose. The lowest detectable residue would be 6 ppb. 379 380 Evaluation Question #5: Describe the toxicity and mode of action of the substance and of its 381 breakdown products and any contaminants. Describe the persistence and areas of concentration in the 382 environment of the substance and its breakdown products (7 U.S.C. § 6518 (m) (2)). 383 384 Toxicity of Kasugamycin 385 Kasugamycin has low acute toxicity to mammals. The oral median lethal dose (LD50) (i.e., the amount that 386 causes death in 50 percent of test animals; a low number indicates high toxicity) in rats is >5000 mg/kg. 387 Similar oral toxicity was seen in mice. The acute dermal toxicity in rats is >2000 mg/kg. Kasugamycin is a 388 mild eye irritant but is not irritating to the skin. It is also not a skin sensitizer. However, the Kasumin 389 formulation is a sensitizer, and may trigger allergies if exposed; see Evaluation Question #10. Kasugamycin 390 is classified EPA Category IV (least toxic, no warning on label) for all exposures other than dermal, for 391 which it is Category III (next least toxic, requires "Caution" warning on label) (U.S. EPA 2005). The 392 National Library of Medicine database PubChem lists the oral LD50 in rats as 11,400 mg/kg; the dermal 393 LD50 is >4,000 mg/kg. Mouse oral is 21,000 mg/kg and dermal is >10,000 mg/kg (PubChem 2020a). In 394 rats, only five percent of an oral dose is absorbed (PubChem 2020a). 395 396 Kasugamycin also has low chronic toxicity. In 90-day rat chronic feeding studies, the kasugamycin no-397 observed-adverse-effect level (NOAEL) is 176.7 mg/kg/day for males and 201.0 for females. These are relatively large doses. Adverse effects seen above these levels were decreased body weights and decreased 398 399 weight gains (U.S. EPA 2005). In 90-day chronic feeding studies of mice, the kasugamycin NOAEL was

400 135.4 mg/kg/day for males and 170.9 for females. Based on increased mortality, anal lesions, and kidney

 Testishy, inclusion to be relatively large does (U.S. IPP 2005). Kasugamycin was more toxic to dogs. In 90-day oral feeding tests, the NOAEL was 10.6 mg/kg/day for males and 11.4 for females. Based on tongue lesions, fewer feecs, swollen mouth, excessive silution, and thickened skin in the mouth, LOAEL was 106 mg/kg/day for males and 107.9 for females (U.S. EPA 2005). Reproductive and developmental effects were seen in rats at high dose. Pronalal studies in rats found the maternal NOAEL was 200 mg/kg/day. Based on decreased body weights, the 10AEL was 1000 mg/kg/day. The LOAEL for developmental effects in offspring was >1000 mg/kg/day. Rabbits were more sensitive. The maternal LOAEL based on spontaneous abortions and reduced body weight was >10 mg/kg/day. The LOAEL for developmental effects in offspring was >1000 mg/kg/day. Rabbits were more sensitive. The maternal LOAEL based on spontaneous abortions and reduced body weight was >10 mg/kg/day. (LS, EPA 2005). Based on decreased fertility and fecundity in first generation parents and an increased pre-coital interval during the mating period for the second generation, reproductive toxicity LOAEL was 425.3 mg/kg/day for males and 152.2 for females. No evidence of carcinogenicity was seen in rats at a NOAEL of 11.3 mg/kg/day for males and 125.2 for females. Increased testicular softening and atrophy of testicular tubules was seen in males at those doses (U.S. EPA 2005). Kasugamycin is not mutagenic and shows no evidence of chromosome damage (U.S. EPA 2005). In rats, more than 00 percent of a dose is excreted within 168 hours. Most (82–94 percent) is excreted in the fees. In rats, 63 percent os a dose is excreted within 168 hours. Most (82–94 percent) is excreted in the fees. In rats, 63 percent was excreted unchanged in urine within sight ours. In a subclaneous injections of 100 mg/kg 43–66 percent was excreted within 168 hours. In a an oral admutistration were seen within one hour of an	401	lesions, the lowest observed adverse effect level (LOAEL) for mice was 408.5 mg/kg/day for males and
103 Fasugamycin was more toxic to dogs. In 90-day oral feeding tests, the NOAEL was 10.6 mg/kg/day for 104 Fasugamycin was more toxic to dogs. In 90-day oral feeding tests, the NOAEL was 10.75 for females (U.S. EPA 2005). 105 Reproductive and developmental effects were seen in rats at high doses. Prenatal studies in rats found the 105 material NOAEL was 200 mg/kg/day. Based on decreased body weights, the LOAEL was 1000 106 mg/kg/day. The LOAFEL for developmental effects in offspring was >1000 mg/kg/day. Rabbits were more 107 mg/kg/day (U.S. EPA 2005). 108 Based on decreased fertility and fecundity in first generation parents and an increased pre-coital interval 109 mg/kg/day (U.S. EPA 2005). 101 materia to and 303.4 for females (U.S. EPA 2005). 102 male rats and 303.4 for females (U.S. EPA 2005). 103 No evidence of carcinogenicity was seen in mice at a NOAEL of 186.3 mg/kg/day for males and 112.5 for 109 females. Incroased testicular softening and atrophy of testicular tubules was seen in males at those 104 for male. 104 for females. 105 EPA 2005). 106 fermales. 107 females. 108 evidence of carcinogenicity was seen in mice at a NOAEL of 11.3 mg/kg/		
 Kasugamycin was more toxic to dogs. In 90-day oral feeding tests, the NOAEL was 10.6 mg/kg/day for males and 11.4 for females. Based on tongue lesions, fewer feces, swollen mouth, eccessive salivation, and thickened skin in the mouth, LOAEL was 106 mg/kg/day for males and 107.9 for females (U.S. EPA 2005). Reproductive and developmental effects were seen in rats at high doses. Prenatal studies in rats found the maternal NOAFL was 200 mg/kg/day. Based on decreased body weights, the LOAFL was 1000 mg/kg/day. The LOAEL for developmental effects in offspring was >1000 mg/kg/day. Rabbits were more sensitive. The maternal LOAEL has edo on spontaneous abortions and reduced body weight was >10 mg/kg/day (U.S. EPA 2005). Based on decreased fertility and fecundity in first generation parents and an increased pre-coital interval during the mating period for the second generation, reproductive toxicity LOAFL was 425.3 mg/kg/day for male rats and 503.4 for females (U.S. EPA 2005). No evidence of carcinogenicity was seen in mice at a NOAEL of 186.3 mg/kg/day for males and 125.2 for females. No evidence of carcinogenicity was seen in rats at a NOAEL of 11.3 mg/kg/day for males and 140 for females. No evidence of carcinogenicity was seen in rats at a NOAEL of 11.3 mg/kg/day for males and 140 for females. No evidence of carcinogenicity was seen in rats at a NOAEL of 12.5 EPA 2005). Kasugamycin is not mutagenic and shows no evidence of chromosome damage (U.S. EPA 2005). The EPA classifies kasugamycin is not mutagenic and shows no evidence of chromosome damage (U.S. EPA 2005). The EPA classifies kasugamycin is not mutagenic and shows no evidence of U.S. EPA 2005). With an intramuscular injection of 1 g into humans, 65 percent was excreted unchanged. Maximum blood concentrations were seen witikely to be carcinogenic in humans" (U.S. EPA 2005). With an intramuscular injection of 1 g into humans, 65 percent was excreted within eight hours. In a ord administration to mi		505.0 for remaies. Again, these are relatively large doses (0.5. Er A 2005).
405 maleš and 11.4 for fomales. Based on tongue lesions, fewer feces, swollen mouth, excessive all/ation, and 406 thickened skin in the mouth, LOAEL was 106 mg/kg/day for males and 107.9 for females (U.S. EPA 2005). 407 Reproductive and developmental effects were seen in rats at high doses. Prenatal studies in rats found the 408 maternal NOAEL was 200 mg/kg/day. Based on decreased body weights, the LOAEL was 1000 409 mg/kg/day. The LOAEL for developmental effects in offspring was >1000 mg/kg/day. Rabbits were more 401 mg/kg/day (U.S. EPA 2005). 402 mg/kg/day (U.S. EPA 2005). 403 for male rats and 50.4 for females (U.S. EPA 2005). 404 for male rats and 50.4 for females (U.S. EPA 2005). 405 ne vidence of carcinogenicity was seen in mice at a NOAEL of 186.3 mg/kg/day for males and 215.2 for 406 for males. No evidence of carcinogenicity was seen in nats at a NOAEL of 11.3 mg/kg/day for males and 140 407 for females. No evidence of carcinogenicity was seen in mice at a NOAEL of 11.3 mg/kg/day for males and 140 408 (U.S. EPA 2005).		Kacugamucin was more toxic to dogs. In 00 day and feeding tosts, the NOAEL was 10.6 mg/kg/day for
 thickened skin in the mouth, LOAEL was 106 mg/kg/day for males and 107.9 for females (U.S. EPA 2005). Reproductive and developmental effects were seen in rats at high doses. Prenatal studies in rats found the maternal NOAEL was 200 mg/kg/day. Based on decreased body weights, the LOAEL was ×1000 mg/kg/day. The LOAEL for developmental effects in offspring was >1000 mg/kg/day. Rabbits were more sensitive. The maternal LOAEL hased on spontaneous abortions and reduced body weight was >101 mg/kg/day. Rabbits were more sensitive. The maternal LOAEL based on spontaneous abortions and reduced body weight was >101 mg/kg/day. US. FPA 2005). Based on decreased fertility and fecundity in first generation parents and an increased pre-coital interval during the mating period for the second generation, reproductive toxicity LOAEL was 425.3 mg/kg/day for males and 503.4 for females. U.S. EPA 2005). No evidence of carcinogenicity was seen in mice at a NOAEL of 186.3 mg/kg/day for males and 125.2 for females. No evidence of carcinogenicity was seen in rats at a NOAEL of 11.3 mg/kg/day for males and 140 for females. No evidence of carcinogenicity was seen in rats at a NOAEL of 186.3 mg/kg/day for males and 140 for females. No evidence of carcinogenicity was seen in rats at a NOAEL of 186.3 mg/kg/day for males and 152.2 for females. No evidence of carcinogenicity was seen an oral as at NOAEL of 186.3 mg/kg/day for males and 152.2 for females. No evidence and store was excreted unthuse was seen in males at those doses (U.S. EPA 2005). Kasugamycin is not mutagenic and shows no evidence of chromosome damage (U.S. EPA 2005). The EPA classifies kasugamycin as "not likely to be carcinogenic in humans" (U.S. EPA 2001). In rats, more than 90 percent of a dose is excreted within 168 hours. Most (82-94 percent) is excreted in the feces. In rats, <\$ percent of a dose was metabolized—most was excreted unchanged. Maximu blood corocentrations were som within one of 10		
107 Reproductive and developmental effects were seen in rats at high doses. Prenatal studies in rats found the 108 Reproductive and developmental effects in offspring was >1000 mg/kg/day, Rabbits were more 109 mg/kg/day. The LOAEL for developmental effects in offspring was >1000 mg/kg/day, Rabbits were more 101 mg/kg/day. The LOAEL for developmental effects in offspring was >1000 mg/kg/day, Rabbits were more 101 mg/kg/day (U.S. FPA 2005). 102 mg/kg/day (U.S. FPA 2005). 103 Based on decreased fertility and fecundity in first generation parents and an increased pre-coital interval 104 during the mating period for the second generation, reproductive toxicity LOAEL was 425.3 mg/kg/day for males and 215.2 for 105 for male rats and 303.4 for females (U.S. EPA 2005). 104 for forales, Increased testicular softening and atrophy of testicular tubules was seen in males at those 105 for males, Increased testicular softening and atrophy of testicular tubules was seen in males at those 105 for males, Increased testicular softening and atrophy of testicular tubules was seen in males at those 106 for forales, Increased testicular softening and atrophy of testicular tubules was seen in males at those 106 for forales, Increased testicular softening and atrophy of testicular tubules was seen in males at those		
408 Reproductive and developmental effects were seen in rats at high does. Prenatal studies in rats found the 409 maternal NOAEL was 200 mg/kg/day. Based on decreased body weights, the LOAEL was 1000 711 maternal NOAEL was 200 mg/kg/day. Based on spontaneous abortions and reduced body weight was >100 712 mg/kg/day. The LOAEL bosed on spontaneous abortions and reduced body weight was >10 713 mg/kg/day. U.S. EPA 2005). 714 Based on decreased fertility and fecundity in first generation parents and an increased pre-coital interval 713 Mo evidence of carcinogenicity was seen in mice at a NOAEL of 186.3 mg/kg/day for males and 215.2 for 714 Females. Increased testicular softening and atrophy of testicular tubules was seen in males at those 712 Kasugamycin is not mutagenic and shows no evidence of chromosome damage (U.S. EPA 2005). The EPA 713 La s, more than 90 percent of a dose is excreted within 168 hours. Most (82-94 percent) is excreted in the 714 feces. In rats, 5 percent of a dose is excreted was excreted in urine within eight hours. In an oral 715 Juit administration to mice of 100 mg/kg, 43-68 percent was excreted in urine within eight hours. In a oral 716 gint hours. Most (82-94 percent) is excreted in the 717 Juit hours. Most (82-94 percent) 718		thickened skin in the mouth, LOAEL was 106 mg/kg/day for males and 107.9 for females (U.S. EPA 2005).
 maternal NOAEL was 200 mg/kg/day. Based on decreased body weights, the LOAEL was 1000 mg/kg/day. The LOAEL for developmental effects in offspring was >1000 mg/kg/day. Rabbits were more sensitive. The maternal LOAEL based on spontaneous abortions and reduced body weight was >10 mg/kg/day (U.S. EPA 2005). Based on decreased fertility and fecundity in first generation parents and an increased pre-coital interval during the mating period for the second generation, reproductive toxicity LOAEL was 425.3 mg/kg/day for male rats and 503.4 for females (U.S. EPA 2005). No evidence of carcinogenicity was seen in rats at a NOAEL of 11.3 mg/kg/day for males and 12.5 for females. No evidence of carcinogenicity was seen in rats at a NOAEL of 11.3 mg/kg/day for males and 14.0 for females. Increased testicular softening and atrophy of testicular tubules was seen in males at those dosse (U.S. EPA 2005). Kasugamycin is not mutagenic and shows no evidence of chromosome damage (U.S. EPA 2005). The EPA classifies kasugamycin as "not likely to be carcinogenic in humans" (U.S. EPA 2013) In rats, more than 90 percent of a dose is excreted within 168 hours. Most (82–94 percent) is excreted in the feese. In rats, <5 percent of a dose was metabolized – most was excreted unchanged. Maximum blood concentrations were seen within one hour of an oral dose (U.S. EPA 2005). With an intramuscular injection of 1 g into humans, 63 percent was excreted unchanged in urine within six hours. In subcutaneous injections of 100 mg/kg. 46-68 percent was excreted unchanged in urine after eight hours (PubChem 2020a). Mode of Action Kasugamycin interferes with bacterial protein synthesis. Proteins are synthesized in the ribosome. During protein synthesis. DNA is transcribed into		
110 mg/kg/day. The LOAEL for developmental effects in offspring was >1000 mg/kg/day. Rabbits were more 111 sensitive. The maternal LOAEL based on spontaneous abortions and reduced body weight was >10 112 mg/kg/day (U.S. EPA 2005). 113 Based on decreased fertility and fecundity in first generation parents and an increased pre-coital interval 114 Based on decreased fortility and fecundity in first generation parents and an increased pre-coital interval 115 during the mating period for the second generation, reproductive toxicity LOAEL was 425.3 mg/kg/day for males and 215.2 for 116 from ale cast and 503.4 for females (U.S. EPA 2005). 117 No evidence of carcinogenicity was seen in rats at a NOAEL of 11.3 mg/kg/day for males and 1402 116 for females. No evidence of carcinogenicity was seen in rats at a NOAEL of 11.3 mg/kg/day for males and 1402 117 Kasugamycin is not mutagenic and shows no evidence of chromosome damage (U.S. EPA 2005). The EPA 118 Kasugamycin is not mutagenic and shows an evidence of chromosome damage (U.S. EPA 2005). The EPA 129 In rats, more than 90 percent of a dose is excreted within 168 hours. Most (82-94 percent) is excreted in the 120 for concentrations were seen within one hour of an oral dose (U.S. EPA 2005). With an intramuscular injection 121 in tots, nose 6100 mg/kg.43-69 percent was excreted in urine within igith ho		
411 sensitive. The maternal LOAEL based on spontaneous abortions and reduced body weight was >10 412 mg/kg/day (U.S. EPA 2005). 413 Based on decreased fertility and fecundity in first generation parents and an increased pre-coital interval 414 during the mating period for the second generation, reproductive toxicity LOAEL was 425.3 mg/kg/day 416 for male rats and 503.4 for females (U.S. EPA 2005). 417 No evidence of carcinogenicity was seen in mice at a NOAEL of 186.3 mg/kg/day for males and 215.2 for 418 No evidence of carcinogenicity was seen in rats at a NOAEL of 11.3 mg/kg/day for males and 140 419 for females. Increased testicular softening and atrophy of testicular tubules was seen in males at those 420 doses (U.S. EPA 2005). 421 Kasugamycin is not mutagenic and shows no evidence of chromosome damage (U.S. EPA 2005). The EPA 422 classifies kasugamycin as "not likely to be carcinogenic in humans" (U.S. EPA 2013) 425 In rats, more than 90 percent of a dose is excreted within 168 hours. Most (82-94 percent) is excreted in the 426 concentrations were seen within one hour of an oral dose (U.S. EPA 2005). With an intramuscular injection 428 doneration to mice of 100 mg/kg 43-68 percent was excreted unchanged. Maximum blood 429 tonice of 100 mg/kg 43-68 percent was excreted in time within six h		
112 mg/kg/day (U.S. EPA 2005). 113 Based on decreased fertility and fecundity in first generation, perroductive toxicity LOAEL was 425.3 mg/kg/day 114 Based on decreased fertility and fecundity in first generation, perroductive toxicity LOAEL was 425.3 mg/kg/day 115 Interval during the mating period for the second generation, reproductive toxicity LOAEL was 425.3 mg/kg/day 116 Interval during the mating period for the second generation, reproductive toxicity LOAEL was 425.3 mg/kg/day for males and 140 117 No evidence of carcinogenicity was seen in rats at NOAEL of 11.3 mg/kg/day for males and 140 116 females. Increased testicular softening and atrophy of testicular tubules was seen in males at those 117 toxic (U.S. EPA 2005). 118 Kasugamycin is not mutagenic and shows no evidence of chromosome damage (U.S. EPA 2005). The EPA 128 classifies kasugamycin as "not likely to be carcinogenic in humans" (U.S. EPA 2013) 129 In rats, more than 90 percent of a dose is excreted within 168 hours. Most (82–94 percent) is excreted in the 120 feces. In rats, <5 percent of a dose was metabolized —most was excreted unchanged. Maximum blood		
Hased on decreased fertility and fecundity in first generation parents and an increased pre-coital interval during the mating period for the second generation, reproductive toxicity LOAEL was 425.3 mg/kg/day for male rats and 503.4 for females (U.S. EPA 2005). No evidence of carcinogenicity was seen in mice at a NOAEL of 186.3 mg/kg/day for males and 215.2 for females. Increased testicular softening and atrophy of testicular tubules was seen in males at those does (U.S. EPA 2005). Kasugamycin is not mutagenic and shows no evidence of chromosome damage (U.S. EPA 2005). The EPA classifies kasugamycin as "not likely to be carcinogenic in humans" (U.S. EPA 2013) In rats, more than 90 percent of a dose is excreted within 168 hours. Most (82–94 percent) is excreted in the fees. In rats, sepreent of a dose was metabolized – most was excreted unchanged. Maximum blood concentrations were seen within one hour of an oral dose (U.S. EPA 2005). With an intramuscular injection administration to notice of 100 mg/kg. 43–68 percent was excreted unchanged in urine within six hours. In subcutaneous injections of 100 mg/kg into rabbits, 96 percent was excreted unchanged in urine within six hours. In kasugamycin interferes with bacterial protein synthesis. Proteins are synthesized in the ribosome. During protein synthesis, DNA is transcribed into messenger RNA (mRNA) that travels to the ribosome. Juring protein synthesis, DNA is transcribed into messenger RNA (mRNA) that interact with tRNA anticodons,		
414 Based on decreased fertility and fecundity in first generation, reproductive toxicity LOAEL was 425.3 mg/kg/day 415 during the mating period for the second generation, reproductive toxicity LOAEL was 425.3 mg/kg/day 417 male rats and 503.4 for females (U.S. EPA 2005). 418 No evidence of carcinogenicity was seen in rats at a NOAEL of 11.3 mg/kg/day for males and 140 419 for females. Increased testicular softening and atrophy of testicular tubules was seen in males at those 420 doses (U.S. EPA 2005). 421 classifies kasugamycin is not mutagenic and shows no evidence of chromosome damage (U.S. EPA 2005). The EPA 422 classifies kasugamycin as "not likely to be carcinogenic in humans" (U.S. EPA 2013) 422 In rats, more than 90 percent of a dose was metabolized – most was excreted unchanged. Maximum blood 423 concentrations were seen within one hour of an oral dose (U.S. EPA 2005). With an intramuscular injection 424 classified kasugamycin in interferes with bacterial protein synthesis. Proteins are synthesized in the ribosome. In subcutaneous injections of 100 mg/kg 43-68 percent was excreted unchanged in urine within six hours. In 425 Kasugamycin interferes with bacterial protein synthesis. Proteins are synthesized in the ribosome. During 426 interacting there with transfer RNA (fRNA) mRNA contains codons that interact with fRNA anticodons, 427 <t< td=""><td></td><td>mg/kg/day (U.S. EPA 2005).</td></t<>		mg/kg/day (U.S. EPA 2005).
415 during the mating period for the second generation, reproductive toxicity LOAEL was 425.3 mg/kg/day 416 for male rats and 503.4 for females (U.S. EPA 2005). 417 No evidence of carcinogenicity was seen in mice at a NOAEL of 186.3 mg/kg/day for males and 215.2 for 418 No evidence of carcinogenicity was seen in rats at a NOAEL of 11.3 mg/kg/day for males and 1400 419 females. Increased testicular softening and atrophy of testicular tubules was seen in males at those 421 doses (U.S. EPA 2005). 422 classifies kasugamycin is not mutagenic and shows no evidence of chromosome damage (U.S. EPA 2005). The EPA 423 classifies kasugamycin as " not likely to be carcinogenic in humans" (U.S. EPA 2013) 424 classifies kasugamycin as " not likely to be carcinogenic in humans" (U.S. EPA 2013) 425 In rats, more than 90 percent of a dose is excreted within 168 hours. Most (82-94 percent) is excreted in the 426 clossifies kasugamycin in one hour of an oral dose (U.S. EPA 2005). With an intranuscular injection 429 of 1 g into humans, 63 percent was excreted unchanged in urine within six hours. In 430 subcutaneous injections of 100 mg/kg 43-66 percent was excreted unchanged in urine after eight 440 hours (PubChem 2020a). 441 hours (PubChem 2020a). 442 kasugamycin i		
416 for male rats and 503.4 for females (U.S. EPA 2005). 417 No evidence of carcinogenicity was seen in mice at a NOAEL of 186.3 mg/kg/day for males and 215.2 for 418 No evidence of carcinogenicity was seen in rats at a NOAEL of 11.3 mg/kg/day for males and 140 420 for females. Increased testicular softening and atrophy of testicular tubules was seen in males at those 406 doses (U.S. EPA 2005). 422 Kasugamycin is not mutagenic and shows no evidence of chromosome damage (U.S. EPA 2005). The EPA 423 Kasugamycin is not mutagenic and shows no evidence of chromosome damage (U.S. EPA 2005). The EPA 424 classifies kasugamycin as "not likely to be carcinogenic in humans" (U.S. EPA 2013) 425 In rats, more than 90 percent of a dose is excreted within 168 hours. Most (82-94 percent) is excreted in the 426 recent at as a dose was metabolized – most was excreted unchanged. Maximum blood 427 recent at a sex of 100 mg/kg, 43-68 percent was excreted in urine within six hours. In 428 subcutaneous injections of 100 mg/kg that rabbits, 96 percent was excreted unchanged in urine within six hours. In 428 kasugamycin interferes with bacterial protein synthesis. Proteins are synthesized in the ribosome. During 429 protein synthesis, DNA is transcribed into messenger RNA (mRNA) that travels to the ribosome. 438 Mode		
 No evidence of carcinogenicity was seen in mice at a NOAEL of 186.3 mg/kg/day for males and 215.2 for females. No evidence of carcinogenicity was seen in rats at a NOAEL of 11.3 mg/kg/day for males and 140 for females. Increased testicular softening and atrophy of testicular tubules was seen in males at those doses (U.S. EPA 2005). Kasugamycin is not mutagenic and shows no evidence of chromosome damage (U.S. EPA 2005). The EPA classifies kasugamycin as "not likely to be carcinogenic in humans" (U.S. EPA 2013) In rats, more than 90 percent of a dose is excreted within 168 hours. Most (82–94 percent) is excreted in the feces. In rats, <5 percent of a dose was metabolized – most was excreted unchanged. Maximum blood concentrations were seen within one hour of an oral dose (U.S. EPA 2005). With an intramuscular injection of 1 g into humans, 63 percent was excreted unchanged in urine within eight hours. In subcutaneous injections of 100 mg/kg 43–68 percent was excreted in the ribosome. In subcutaneous injections of 100 mg/kg into rabbits, 96 percent was excreted unchanged in urine after eight hours (PubChem 2020a). <i>Mode of Action</i> Kasugamycin interferes with bacterial protein synthesis. Proteins are synthesized in the ribosome. During protein synthesis, DNA is transcribed into messenger RNA (mRNA) that travels to the ribosome. During protein synthesis, DNA is transcribed into messenger RNA (mRNA) that travels to the ribosome, interacting there with transfer RNA (tRNA). mRNA contains codons that interact with tRNA anticodons, telling tRNA which amino acids to add to the growing peptide chain (Culver 2001). Kasugamycin interferes with tRNA binding to the 305 subuiti'' (Schuwirth et al. 2006). Kasugamycin bioks to be 305 ribosome' in the region of the mRNA binding to the 305 rubosume' in the role of ribosome. In the region of the mRNA binding to the 305 subuiti'' Schuwirth et al. 2006). Kasugamycin binbits tRNA binding at the P-site by pertu		
 No evidence of carcinogenicity was seen in mice at a NOAEL of 186.3 mg/kg/day for males and 215.2 for females. No evidence of carcinogenicity was seen in rats at a NOAEL of 11.3 mg/kg/day for males and 140 for females. Increased testicular softening and atrophy of testicular tubules was seen in males at those doses (U.S. EPA 2005). Kasugamycin is not mutagenic and shows no evidence of chromosome damage (U.S. EPA 2005). The EPA classifies kasugamycin as "not likely to be carcinogenic in humans" (U.S. EPA 2013) In rats, more than 90 percent of a dose is excreted within 168 hours. Most (82–94 percent) is excreted in the feces. In rats, <5 percent of a dose was metabolized – most was excreted unchanged. Maximum blood concentrations were seen within one hour of an oral dose (U.S. EPA 2005). With an intramuscular injection of 1 g into humans, 63 percent was excreted unchanged in urine within eight hours. In an oral administration to mice of 100 mg/kg, 43–68 percent was excreted in urine within six hours. In subcutaneous injections of 100 mg/kg into rabbits, 96 percent was excreted unchanged in urine after eight hours (PubChem 2020a). <i>Mode of Action</i> Kasugamycin interferes with bacterial protein synthesis. Proteins are synthesized in the ribosome. During protein synthesis, DNA is transcribed into messenger RNA (mRNA) that travels to the ribosome. During protein synthesis, DNA is transcribed into messenger RNA (mRNA) that travels to the ribosome. Juring trateracting there with transfer RNA (tRNA). mRNA contains codons that interact with tRNA anticodons, telling tRNA which amino acids to add to the growing peptide chain (Culver 2001). Kasugamycin interferes with tRNA binding to the 305 subunit" (Schuwirth et al. 2006). Kasugamycin inhibits tRNA binding at the P-site by perturbing the mRNA-tRNA codon-anticodon interaction during translation by blocking initiator tRNA binding to the 305 subunit" (Schuwirth et al. 2006). Kasugamycin inhibits tRN		for male rats and 503.4 for females (U.S. EPA 2005).
419 females. No evidence of carcinogenicity was seen in rats at a NOAEL of 11.3 mg/kg/day for males and 140 420 for females. Increased testicular softening and atrophy of testicular tubules was seen in males at those 420 doses (U.S. EPA 2005). 421 Kasugamycin is not mutagenic and shows no evidence of chromosome damage (U.S. EPA 2005). The EPA 422 classifies kaugamycin as " not likely to be carcinogenic in humans" (U.S. EPA 2013) 422 In rats, more than 90 percent of a dose is excreted within 168 hours. Most (82-94 percent) is excreted in the 426 csc. In rats, <5 percent of a dose was metabolized – most was excreted unchanged. Maximum blood	417	
 for females. Increased testicular softening and atrophy of testicular tubules was seen in males at those doses (U.S. EPA 2005). Kasugamycin is not mutagenic and shows no evidence of chromosome damage (U.S. EPA 2005). The EPA classifies kasugamycin as "not likely to be carcinogenic in humans" (U.S. EPA 2013) In rats, more than 90 percent of a dose is excreted within 168 hours. Most (82-94 percent) is excreted in the feccs. In rats, <5 percent of a dose was metabolized – most was excreted unchanged. Maximum blood concentrations were seen within one hour of an oral dose (U.S. EPA 2005). With an intramuscular injection of 1 g into humans, 63 percent was excreted unchanged in urine within eight hours. In an oral administration to mice of 100 mg/kg, 43-68 percent was excreted in unchanged in urine after eight hours (PubChem 2020). <i>Mode of Action</i> Kasugamycin interferes with bacterial protein synthesis. Proteins are synthesized in the ribosome. During protein synthesis, DNA is transcribed into messenger RNA (mRNA) that travels to the ribosome. During protein synthesis, DNA is transcribed into messenger RNA (mRNA) that travels to the ribosome, interacting there with transfer RNA (tRNA). mRNA contains codons that interact with tRNA anticodons, telling tRNA which amino acids to add to the growing peptide chain (Culver 2001). Kasugamycin interferes with tRNA binding in the ribosome. Specifically, it inhibits "initiation of translation by blocking initiator tRNA binding to the 30S subunit" (Schuwirth et al. 2006). Kasugamycin binds to the 30S ribosome "in the region of the mRNA binding tunnel in the E-site and indirectly inhibits tRNA binding at the P-site by perturbing the mRNA-tRNA codon-anticodon interaction during translational pitoking at the P-site by perturbing the mRNA-tRNA codon-anticodon interaction during translational pitoking at the P-site by perturbing the mRNA-tRNA codon-anticodon interaction during trabstonin anticating (Voshii e		
 doses (U.S. EPA 2005). Kasugamycin is not mutagenic and shows no evidence of chromosome damage (U.S. EPA 2005). The EPA classifies kasugamycin as "not likely to be carcinogenic in humans" (U.S. EPA 2013) In rats, more than 90 percent of a dose is excreted within 168 hours. Most (82–94 percent) is excreted in the feces. In rats, <5 percent of a dose was metabolized – most was excreted unchanged. Maximum blood concentrations were seen within one hour of an oral dose (U.S. EPA 2005). With an intramuscular injection of 1 g into humans, 63 percent was excreted unchanged in urine within eight hours. In an oral administration to mice of 100 mg/kg, 43–68 percent was excreted in urine within six hours. In subcutaneous injections of 100 mg/kg a/6-68 percent was excreted unchanged in urine after eight hours (PubChem 2020a). <i>Mode of Action</i> Kasugamycin interferes with bacterial protein synthesis. Proteins are synthesized in the ribosome. During protein synthesis, DNA is transfer RNA (tRNA). mRNA contains codons that interact with tRNA anticodons, telling tRNA which amino acids to add to the growing peptide chain (Culver 2001). Kasugamycin interferes with tRNA binding in the ribosome. Specifically, it inhibits "initiation of translation by blocking initiator tRNA binding to the 30S subunit" (Schuwirth et al. 2006). Kasugamycin binds to the 30S ribosome "in the region of the mRNA binding tunnel in the E-site and P-site and P-site and indirectly inhibits tRNA binding at the P-site by perturbing the mRNA-tRNA codon-anticodon interaction during translational initiation" (Voshii et al. 2012). Basically, kasugamycin blocks movement of mRNA through the ribosome, preventing effective interaction with tRNA. <i>Persistence in the Environment</i> See <i>Evaluation Question #6</i>; Describe any environmental contamination that could result from the petitioned substance involves only mineral salts, organic feedstocks such as maltose or corn steep liquor, acids, bases, and io	419	females. No evidence of carcinogenicity was seen in rats at a NOAEL of 11.3 mg/kg/day for males and 140
 Kasugamycin is not mutagenic and shows no evidence of chromosome damage (U.S. EPA 2005). The EPA classifies kasugamycin as "not likely to be carcinogenic in humans" (U.S. EPA 2013) In rats, more than 90 percent of a dose is excreted within 168 hours. Most (82-94 percent) is excreted in the feces. In rats, <5 percent of a dose was metabolized – most was excreted unchanged. Maximum blood concentrations were seen within one hour of an oral dose (U.S. EPA 2005). With an intramuscular injection of 1 g into humans, 63 percent was excreted unchanged in urine within eight hours. In an oral administration to mice of 100 mg/kg, 43-68 percent was excreted unchanged in urine within six hours. In an oral subcutaneous injections of 100 mg/kg tinto rabbits, 96 percent was excreted unchanged in urine after eight hours (PubChem 2020a). <i>Mode of Action</i> Kasugamycin interferes with bacterial protein synthesis. Proteins are synthesized in the ribosome. During protein synthesis, DNA is transcribed into messenger RNA (mRNA) that travels to the ribosome. During theracting there with transfer RNA (tRNA) mRNA contains codons that interact with tRNA anticodons, telling tRNA which amino acids to add to the growing peptide chain (Culver 2001). Kasugamycin interferes with tRNA binding in the ribosome. Specifically, it inhibits "initiation of translation by blocking initiator tRNA binding to the 305 subunit" (Schuwirth et al. 2006). Kasugamycin binds to the 305 ribosome "in the region of the mRNA 4RNA contain codon-anticodon interaction during translational initiation" (Yoshi et al. 2012). Basically, kasugamycin blocks movement of mRNA through the ribosome, preventing effective interaction with tRNA. <i>Persistence in the Environment</i> See <i>Evaluation Question #6</i>: Describe any environmental contamination that could result from the petilioned substance involves only mineral salts, organic feedstocks such as maltose or corn steep liquor, acids, bases, and ion exchange resins. Ion ex	420	for females. Increased testicular softening and atrophy of testicular tubules was seen in males at those
 Kasugamycin is not mutagenic and shows no evidence of chromosome damage (U.S. EPA 2005). The EPA classifies kasugamycin as "not likely to be carcinogenic in humans" (U.S. EPA 2013) In rats, more than 90 percent of a dose is excreted within 168 hours. Most (82–94 percent) is excreted in the feces. In rats, <5 percent of a dose was metabolized – most was excreted unchanged. Maximum blood concentrations were seen within one hour of an oral dose (U.S. EPA 2005). With an intramuscular injection of 10 ginto humans, 63 percent was excreted unchanged in urine within eight hours. In an oral administration to mice of 100 mg/kg, 43–68 percent was excreted in urine within six hours. In subcutaneous injections of 100 mg/kg into rabbits, 96 percent was excreted unchanged in urine after eight hours (PubChem 2020a). <i>Mode of Action</i> Kasugamycin interferes with bacterial protein synthesis. Proteins are synthesized in the ribosome. During interacting there with transfer RNA (tRNA). mRNA contains codons that interact with tRNA anticodons, telling tRNA which amino acids to add to the growing peptide chain (Culver 2001). Kasugamycin interferes with tRNA binding in the ribosome. Specifically, it inhibits "initiation of translation by blocking initiator tRNA binding to the 30S subunit" (Schuwirth et al. 2006). Kasugamycin binds to the 30S ribosome "in the region of the mRNA AtRNA codon-anticodon interaction during translational initiation" (Yoshii et al. 2012). Basically, kasugamycin blocks movement of mRNA through the ribosome, preventing effective interaction with tRNA. <i>Fuluation Question #6</i>: Describe any environmental contamination that could result from the petitioned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)). Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins. an be rec	421	doses (U.S. EPA 2005).
 classifies kasugamycin as "not likely to be carcinogenic in humans" (U.S. EPA 2013) In rats, more than 90 percent of a dose is excreted within 168 hours. Most (82-94 percent) is excreted in the feces. In rats, <5 percent of a dose was metabolized – most was excreted unchanged. Maximum blood concentrations were seen within one hour of an oral dose (U.S. EPA 2005). With an intramuscular injection of 1 g into humans, 63 percent was excreted unchanged in urine within eight hours. In an oral administration to mice of 100 mg/kg, 43-68 percent was excreted in urine within six hours. In subcutaneous injections of 100 mg/kg into rabbits, 96 percent was excreted unchanged in urine after eight hours (PubChem 2020a). <i>Mode of Action</i> Kasugamycin interferes with bacterial protein synthesis. Proteins are synthesized in the ribosome. During protein synthesis, DNA is transcribed into messenger RNA (mRNA) that travels to the ribosome, interacting there with transfer RNA (tRNA). mRNA contains codons that interact with tRNA anticodons, telling tRNA which amino acids to add to the growing peptide chain (Culver 2001). Kasugamycin interferes with RNA binding in the ribosome. Specifically, it inhibits "initiation of translation by blocking initiator tRNA binding to the 30S subunit" (Schuwirth et al. 2006). Kasugamycin binks to the 305 ribosome " in the region of the mRNA binding tunnel in the E-site and P-site and indirectly inhibits tRNA binding at the P-site by perturbing the mRNA-tRNA codon-anticodon interaction during translational initiation" (Yoshii et al. 2012). Basically, kasugamycin blocks movement of mRNA through the ribosome, preventing effective interaction with tRNA. <i>Evaluation Question #4</i> for more information. <i>Evaluation Question #4</i> for more information. <i>Evaluation Question #6</i>; Describe any environmental contamination that could result from the petitioned substance's manufacture, use, misuse, or dis	422	
 In rats, more than 90 percent of a dose is excreted within 168 hours. Most (82–94 percent) is excreted in the feces. In rats, <5 percent of a dose was metabolized – most was excreted unchanged. Maximum blood concentrations were seen within one hour of an oral dose (U.S. EPA 2005). With an intramuscular injection of 1 g into humans, 63 percent was excreted unchanged in urine within eight hours. In an oral administration to mice of 100 mg/kg, 43–68 percent was excreted in urine within six hours. In subcutaneous injections of 100 mg/kg into rabbits, 96 percent was excreted unchanged in urine after eight hours (PubChem 2020a). <i>Mode of Action</i> Kasugamycin interferes with bacterial protein synthesis. Proteins are synthesized in the ribosome. During protein synthesis, DNA is transcribed into messenger RNA (mRNA) that travels to the ribosome, interacting there with transfer RNA (tRNA). mRNA contains codons that interact with tRNA anticodons, telling tRNA which amino acids to add to the growing peptide chain (Culver 2001). Kasugamycin interferes with tRNA binding in the ribosome. Specifically, it inhibits "initiation of translation by blocking initiator tRNA binding to the 30S subunit" (Schuwirth et al. 2006). Kasugamycin binds to the 30S ribosome "in the region of the mRNA-tRNA codon-anticodon interaction during translational initiation" (Yoshii et al. 2012). Basically, kasugamycin blocks movement of mRNA through the ribosome, preventing effective interaction with tRNA. <i>Persistence in the Environment</i> See <i>Evaluation Question #6</i>; Describe any environmental contamination that could result from the petitoned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 618 (m) (3)). Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose or corn steep liquor, acids, bases, and ion ex	423	Kasugamycin is not mutagenic and shows no evidence of chromosome damage (U.S. EPA 2005). The EPA
 In rats, more than 90 percent of a dose is excreted within 168 hours. Most (82–94 percent) is excreted in the feces. In rats, <5 percent of a dose was metabolized – most was excreted unchanged. Maximum blood concentrations were seen within one hour of an oral dose (U.S. EPA 2005). With an intramuscular injection of 1 g into humans, 63 percent was excreted unchanged in urine within eight hours. In an oral administration to mice of 100 mg/kg, 43–68 percent was excreted in urine within six hours. In subcutaneous injections of 100 mg/kg into rabbits, 96 percent was excreted unchanged in urine after eight hours (PubChem 2020a). Mode of Action Kasugamycin interferes with bacterial protein synthesis. Proteins are synthesized in the ribosome. During protein synthesis, DNA is transcribed into messenger RNA (mRNA) that travels to the ribosome, theracting there with transfer RNA (tRNA). mRNA contains codons that interact with tRNA anticodons, telling tRNA which amino acids to add to the growing peptide chain (Culver 2001). Kasugamycin interferes with binding in the ribosome. Specifically, it inhibits "initiation of translation by blocking initiator tRNA binding to the 30S subunit" (Schwirth et al. 2006). Kasugamycin binds to the 30S ribosome "in the region of the mRNA-tRNA codon-anticodon interaction during translation initiation" (Yoshii et al. 2012). Basically, kasugamycin blocks movement of mRNA through the ribosome, preventing effective interaction with tRNA. <i>Persistence in the Environment</i> See <i>Evaluation Question #6</i> for more information. Evaluation Question #6 Describe any environmental contamination that could result from the petitioned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)). Manufacturing of	424	classifies kasugamycin as "not likely to be carcinogenic in humans" (U.S. EPA 2013)
 feces. In rats, <5 percent of a dose was metabolized – most was excreted unchanged. Maximum blood concentrations were seen within one hour of an oral dose (U.S. EPA 2005). With an intramuscular injection of 1 g into humans, 63 percent was excreted unchanged in urine within eight hours. In an oral administration to mice of 100 mg/kg, 43–68 percent was excreted in urine within six hours. In subcutaneous injections of 100 mg/kg into rabbits, 96 percent was excreted unchanged in urine after eight hours (PubChem 2020a). <i>Mode of Action</i> Kasugamycin interferes with bacterial protein synthesis. Proteins are synthesized in the ribosome. During protein synthesis, DNA is transcribed into messenger RNA (mRNA) that travels to the ribosome, interacting there with transfer RNA (tRNA). mRNA contains codons that interact with tRNA anticodons, telling tRNA which amino acids to add to the growing peptide chain (Culver 2001). Kasugamycin interferes with tRNA binding in the ribosome. Specifically, it inhibits "initiation of translation by blocking initiator tRNA binding to the 30S subunit" (Schuwirth et al. 2006). Kasugamycin binds to the 30S ribosome "in the region of the mRNA binding tunnel in the E-site and P-site and indirectly inhibits tRNA binding at the P-site by perturbing the mRNA-tRNA codon-anticodon interaction during translational initiation" (Yoshii et al. 2012). Basically, kasugamycin blocks movement of mRNA through the ribosome, preventing effective interaction. <i>Evaluation Question #6</i> for more information. <i>Evaluation Question #6</i> for more information. Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins can be rec	425	
 concentrations were seen within one hour of an oral dose (U.S. EPA 2005). With an intramuscular injection of 1 g into humans, 63 percent was excreted unchanged in urine within eight hours. In an oral administration to mice of 100 mg/kg, 43–68 percent was excreted in urine within six hours. In subcutaneous injections of 100 mg/kg into rabbits, 96 percent was excreted unchanged in urine after eight hours (PubChem 2020a). <i>Mode of Action</i> Kasuganycin interferes with bacterial protein synthesis. Proteins are synthesized in the ribosome. During protein synthesis, DNA is transcribed into messenger RNA (mRNA) that travels to the ribosome, interacting there with transfer RNA (tRNA). mRNA contains codons that interact with tRNA anticodons, telling tRNA which amino acids to add to the growing peptide chain (Culver 2001). Kasuganycin interferes with tRNA binding in the ribosome. Specifically, it inhibits "initiation of translation by blocking initiator tRNA binding to the 30S subunit" (Schuwirth et al. 2006). Kasugamycin binds to the 30S ribosome "in the region of the mRNA binding tunnel in the E-site and P-site and indirectly inhibits tRNA binding at the P-site by perturbing the mRNA-tRNA codon-anticodon interaction during translational initiation" (Yoshii et al. 2012). Basically, kasugamycin blocks movement of mRNA through the ribosome, preventing effective interaction with tRNA. <i>Evaluation Question #6</i>: Describe any environmental contamination that could result from the petitioned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)). Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins can be recycled. Other items 	426	In rats, more than 90 percent of a dose is excreted within 168 hours. Most (82–94 percent) is excreted in the
 concentrations were seen within one hour of an oral dose (U.S. EPA 2005). With an intramuscular injection of 1 g into humans, 63 percent was excreted unchanged in urine within eight hours. In an oral administration to mice of 100 mg/kg, 43–68 percent was excreted in urine within six hours. In subcutaneous injections of 100 mg/kg into rabbits, 96 percent was excreted unchanged in urine after eight hours (PubChem 2020a). <i>Mode of Action</i> Kasugamycin interferes with bacterial protein synthesis. Proteins are synthesized in the ribosome. During protein synthesis, DNA is transcribed into messenger RNA (mRNA) that travels to the ribosome, interacting there with transfer RNA (tRNA). mRNA contains codons that interact with tRNA anticodons, telling tRNA which amino acids to add to the growing peptide chain (Culver 2001). Kasugamycin interferes with tRNA binding in the ribosome. Specifically, it inhibits "initiation of translation by blocking initiator tRNA binding to the 30S subunit" (Schuwirth et al. 2006). Kasugamycin binds to the 30S ribosome "in the region of the mRNA binding tunnel in the E-site and P-site and indirectly inhibits tRNA binding at the P-site by perturbing the mRNA-tRNA codon-anticodon interaction during translational initiation" (Yoshii et al. 2012). Basically, kasugamycin blocks movement of mRNA through the ribosome, preventing effective interaction with tRNA. <i>Persistence in the Environment</i> See <i>Evaluation Question #6</i>: Describe any environmental contamination that could result from the petitioned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)). Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins can be recycled. Other items 	427	feces. In rats, <5 percent of a dose was metabolized – most was excreted unchanged. Maximum blood
 of 1 g into humans, 63 percent was excreted unchanged in urine within eight hours. In an oral administration to mice of 100 mg/kg, 43–68 percent was excreted in urine within six hours. In subcutaneous injections of 100 mg/kg into rabbits, 96 percent was excreted unchanged in urine after eight hours (PubChem 2020a). <i>Mode of Action</i> Kasugamycin interferes with bacterial protein synthesis. Proteins are synthesized in the ribosome. During protein synthesis, DNA is transcribed into messenger RNA (mRNA) that travels to the ribosome, interacting there with transfer RNA (tRNA). mRNA contains codons that interact with tRNA anticodons, telling tRNA which amino acids to add to the growing peptide chain (Culver 2001). Kasugamycin interferes with tRNA binding in the ribosome. Specifically, it inhibits "initiation of translation by blocking initiator tRNA binding to the 30S subunit" (Schuwirth et al. 2006). Kasugamycin hibits tRNA binding at the P-site by perturbing the mRNA-tRNA codon-anticodon interaction during translational initiation" (Yoshii et al. 2012). Basically, kasugamycin blocks movement of mRNA through the ribosome, preventing effective interaction with tRNA. <i>Persistence in the Environment</i> See <i>Evaluation Question #4</i> for more information. Evaluation Question #6: Describe any environmental contamination that could result from the petitioned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)). Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins can be recycled. Other items 	428	
 administration to mice of 100 mg/kg, 43–68 percent was excreted in urine within six hours. In subcutaneous injections of 100 mg/kg into rabbits, 96 percent was excreted unchanged in urine after eight hours (PubChem 2020a). <i>Mode of Action</i> Kasugamycin interferes with bacterial protein synthesis. Proteins are synthesized in the ribosome. During protein synthesis, DNA is transcribed into messenger RNA (mRNA) that travels to the ribosome, interacting there with transfer RNA (tRNA). mRNA contains codons that interact with tRNA anticodons, telling tRNA which amino acids to add to the growing peptide chain (Culver 2001). Kasugamycin interferes with tRNA binding in the ribosome. Specifically, it inhibits "initiation of translation by blocking initiator tRNA binding to the 30S subunit" (Schuwirth et al. 2006). Kasugamycin binds to the 30S ribosome "in the region of the mRNA binding tunnel in the E-site and P-site and indirectly inhibits tRNA binding at the P-site by perturbing the mRNA-tRNA codon-anticodon interaction during translational initiation" (Yoshii et al. 2012). Basically, kasugamycin blocks movement of mRNA through the ribosome, preventing effective interaction with tRNA. <i>Persistence in the Environment</i> See <i>Evaluation Question #4</i> for more information. <i>Evaluation Question #6</i>: Describe any environmental contamination that could result from the petitioned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)). <i>Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose</i> or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins can be recycled. Other items 		
 subcutaneous injections of 100 mg/kg into rabbits, 96 percent was excreted unchanged in urine after eight hours (PubChem 2020a). <i>Mode of Action</i> Kasugamycin interferes with bacterial protein synthesis. Proteins are synthesized in the ribosome. During protein synthesis, DNA is transcribed into messenger RNA (mRNA) that travels to the ribosome, interacting there with transfer RNA (tRNA). mRNA contains codons that interact with tRNA anticodons, telling tRNA which amino acids to add to the growing peptide chain (Culver 2001). Kasugamycin interferes with tRNA binding in the ribosome. Specifically, it inhibits "initiation of translation by blocking initiator tRNA binding to the 30S subunit" (Schuwirth et al. 2006). Kasugamycin binds to the 30S ribosome "in the region of the mRNA binding tunnel in the E-site and P-site and indirectly inhibits tRNA binding at the P-site by perturbing the mRNA-tRNA codon-anticodon interaction during translational initiation" (Yoshii et al. 2012). Basically, kasugamycin blocks movement of mRNA through the ribosome, preventing effective interaction with tRNA. <i>Persistence in the Environment</i> See <i>Evaluation Question #6</i> (Describe any environmental contamination that could result from the petitoned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)). Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins can be recycled. Other items 		
 hours (PubChem 2020a). <i>Mode of Action</i> Kasugamycin interferes with bacterial protein synthesis. Proteins are synthesized in the ribosome. During protein synthesis, DNA is transcribed into messenger RNA (mRNA) that travels to the ribosome, interacting there with transfer RNA (tRNA). mRNA contains codons that interact with tRNA anticodons, telling tRNA which amino acids to add to the growing peptide chain (Culver 2001). Kasugamycin interferes with tRNA binding in the ribosome. Specifically, it inhibits "initiation of translation by blocking initiator tRNA binding to the 30S subunit" (Schuwirth et al. 2006). Kasugamycin binds to the 30S ribosome "in the region of the mRNA binding tunnel in the E-site and P-site and indirectly inhibits tRNA binding at the P-site by perturbing the mRNA-tRNA codon-anticodon interaction during translational initiation" (Yoshii et al. 2012). Basically, kasugamycin blocks movement of mRNA through the ribosome, preventing effective interaction with tRNA. <i>Persistence in the Environment</i> See <i>Evaluation Question #6</i>: Describe any environmental contamination that could result from the petitioned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)). Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins can be recycled. Other items 		
 Mode of Action Kasugamycin interferes with bacterial protein synthesis. Proteins are synthesized in the ribosome. During protein synthesis, DNA is transcribed into messenger RNA (mRNA) that travels to the ribosome, interacting there with transfer RNA (tRNA). mRNA contains codons that interact with tRNA anticodons, telling tRNA which amino acids to add to the growing peptide chain (Culver 2001). Kasugamycin interferes with tRNA binding in the ribosome. Specifically, it inhibits "initiation of translation by blocking initiator tRNA binding to the 30S subunit" (Schuwirth et al. 2006). Kasugamycin binds to the 30S ribosome "in the region of the mRNA binding tunnel in the E-site and P-site and indirectly inhibits tRNA binding at the P-site by perturbing the mRNA-tRNA codon-anticodon interaction during translational initiation" (Yoshii et al. 2012). Basically, kasugamycin blocks movement of mRNA through the ribosome, preventing effective interaction with tRNA. <i>Persistence in the Environment</i> See <i>Evaluation Question #6</i>: Describe any environmental contamination that could result from the petitioned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)). Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins can be recycled. Other items 		
 Mode of Action Kasugamycin interferes with bacterial protein synthesis. Proteins are synthesized in the ribosome. During protein synthesis, DNA is transcribed into messenger RNA (mRNA) that travels to the ribosome, interacting there with transfer RNA (tRNA). mRNA contains codons that interact with tRNA anticodons, telling tRNA which amino acids to add to the growing peptide chain (Culver 2001). Kasugamycin interferes with tRNA binding in the ribosome. Specifically, it inhibits "initiation of translation by blocking initiator tRNA binding to the 30S subunit" (Schuwirth et al. 2006). Kasugamycin binds to the 30S ribosome "in the region of the mRNA binding tunnel in the E-site and P-site and indirectly inhibits tRNA binding at the P-site by perturbing the mRNA-tRNA codon-anticodon interaction during translational initiation" (Yoshii et al. 2012). Basically, kasugamycin blocks movement of mRNA through the ribosome, preventing effective interaction with tRNA. <i>Persistence in the Environment</i> See <i>Evaluation Question #4</i> for more information. Evaluation Question #6: Describe any environmental contamination that could result from the petitioned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)). Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins can be recycled. Other items 		
 Kasugamycin interferes with bacterial protein synthesis. Proteins are synthesized in the ribosome. During protein synthesis, DNA is transcribed into messenger RNA (mRNA) that travels to the ribosome, interacting there with transfer RNA (tRNA). mRNA contains codons that interact with tRNA anticodons, telling tRNA which amino acids to add to the growing peptide chain (Culver 2001). Kasugamycin interferes with tRNA binding in the ribosome. Specifically, it inhibits "initiation of translation by blocking initiator tRNA binding to the 30S subunit" (Schuwirth et al. 2006). Kasugamycin binds to the 30S ribosome "in the region of the mRNA binding tunnel in the E-site and P-site and indirectly inhibits tRNA binding at the P-site by perturbing the mRNA-tRNA codon-anticodon interaction during translational initiation" (Yoshii et al. 2012). Basically, kasugamycin blocks movement of mRNA through the ribosome, preventing effective interaction with tRNA. <i>Persistence in the Environment</i> See <i>Evaluation Question #6</i>: Describe any environmental contamination that could result from the petitioned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)). Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins can be recycled. Other items 		Mode of Action
 protein synthesis, DNA is transcribed into messenger RNA (mRNA) that travels to the ribosome, interacting there with transfer RNA (tRNA). mRNA contains codons that interact with tRNA anticodons, telling tRNA which amino acids to add to the growing peptide chain (Culver 2001). Kasugamycin interferes with tRNA binding in the ribosome. Specifically, it inhibits "initiation of translation by blocking initiator tRNA binding to the 30S subunit" (Schuwirth et al. 2006). Kasugamycin binds to the 30S ribosome "in the region of the mRNA binding tunnel in the E-site and P-site and indirectly inhibits tRNA binding at the P-site by perturbing the mRNA-tRNA codon-anticodon interaction during translational initiation" (Yoshii et al. 2012). Basically, kasugamycin blocks movement of mRNA through the ribosome, preventing effective interaction with tRNA. <i>Persistence in the Environment</i> See <i>Evaluation Question #4</i> for more information. <i>Evaluation Question #6</i>: Describe any environmental contamination that could result from the petitioned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)). Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins can be recycled. Other items 		
 interacting there with transfer RNA (tRNA). mRNA contains codons that interact with tRNA anticodons, telling tRNA which amino acids to add to the growing peptide chain (Culver 2001). Kasugamycin interferes with tRNA binding in the ribosome. Specifically, it inhibits "initiation of translation by blocking initiator tRNA binding to the 30S subunit" (Schuwirth et al. 2006). Kasugamycin binds to the 30S ribosome "in the region of the mRNA binding tunnel in the E-site and P-site and indirectly inhibits tRNA binding at the P-site by perturbing the mRNA-tRNA codon-anticodon interaction during translational initiation" (Yoshii et al. 2012). Basically, kasugamycin blocks movement of mRNA through the ribosome, preventing effective interaction with tRNA. <i>Persistence in the Environment</i> See <i>Evaluation Question #4</i> for more information. <i>Evaluation Question #6</i>: Describe any environmental contamination that could result from the petitioned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)). Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins can be recycled. Other items 		
 telling tRNA which amino acids to add to the growing peptide chain (Culver 2001). Kasugamycin interferes with tRNA binding in the ribosome. Specifically, it inhibits "initiation of translation by blocking initiator tRNA binding to the 30S subunit" (Schuwirth et al. 2006). Kasugamycin binds to the 30S ribosome "in the region of the mRNA binding tunnel in the E-site and P-site and indirectly inhibits tRNA binding at the P-site by perturbing the mRNA-tRNA codon-anticodon interaction during translational initiation" (Yoshii et al. 2012). Basically, kasugamycin blocks movement of mRNA through the ribosome, preventing effective interaction with tRNA. <i>Persistence in the Environment</i> See <i>Evaluation Question #4</i> for more information. Evaluation Question #6: Describe any environmental contamination that could result from the petitioned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)). Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins can be recycled. Other items 		
 Kasugamycin interferes with tRNA binding in the ribosome. Specifically, it inhibits "initiation of translation by blocking initiator tRNA binding to the 30S subunit" (Schuwirth et al. 2006). Kasugamycin binds to the 30S ribosome "in the region of the mRNA binding tunnel in the E-site and P-site and indirectly inhibits tRNA binding at the P-site by perturbing the mRNA-tRNA codon-anticodon interaction during translational initiation" (Yoshii et al. 2012). Basically, kasugamycin blocks movement of mRNA through the ribosome, preventing effective interaction with tRNA. <i>Persistence in the Environment</i> See <i>Evaluation Question #4</i> for more information. Evaluation Question #6: Describe any environmental contamination that could result from the petitioned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)). Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins can be recycled. Other items 		
 Kasugamycin interferes with tRNA binding in the ribosome. Specifically, it inhibits "initiation of translation by blocking initiator tRNA binding to the 30S subunit" (Schuwirth et al. 2006). Kasugamycin binds to the 30S ribosome "in the region of the mRNA binding tunnel in the E-site and P-site and indirectly inhibits tRNA binding at the P-site by perturbing the mRNA-tRNA codon-anticodon interaction during translational initiation" (Yoshii et al. 2012). Basically, kasugamycin blocks movement of mRNA through the ribosome, preventing effective interaction with tRNA. <i>Persistence in the Environment</i> See <i>Evaluation Question #4</i> for more information. <i>Evaluation Question #6</i>: Describe any environmental contamination that could result from the petitioned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)). Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins can be recycled. Other items 		
 translation by blocking initiator tRNA binding to the 30S subunit" (Schuwirth et al. 2006). Kasugamycin binds to the 30S ribosome "in the region of the mRNA binding tunnel in the E-site and P-site and indirectly inhibits tRNA binding at the P-site by perturbing the mRNA-tRNA codon-anticodon interaction during translational initiation" (Yoshii et al. 2012). Basically, kasugamycin blocks movement of mRNA through the ribosome, preventing effective interaction with tRNA. <i>Persistence in the Environment</i> See <i>Evaluation Question #4</i> for more information. Evaluation Question #6: Describe any environmental contamination that could result from the petitioned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)). Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins can be recycled. Other items 		Kasugamycin interferes with tRNA binding in the ribosome. Specifically, it inhibits "initiation of
 binds to the 30S ribosome "in the region of the mRNA binding tunnel in the E-site and P-site and indirectly inhibits tRNA binding at the P-site by perturbing the mRNA-tRNA codon-anticodon interaction during translational initiation" (Yoshii et al. 2012). Basically, kasugamycin blocks movement of mRNA through the ribosome, preventing effective interaction with tRNA. <i>Persistence in the Environment</i> See <i>Evaluation Question #4</i> for more information. Evaluation Question #6: Describe any environmental contamination that could result from the petitioned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)). Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins can be recycled. Other items 		
 inhibits tRNA binding at the P-site by perturbing the mRNA-tRNA codon-anticodon interaction during translational initiation" (Yoshii et al. 2012). Basically, kasugamycin blocks movement of mRNA through the ribosome, preventing effective interaction with tRNA. <i>Persistence in the Environment</i> See <i>Evaluation Question #4</i> for more information. Evaluation Question #6: Describe any environmental contamination that could result from the petitioned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)). Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins can be recycled. Other items 		
 translational initiation" (Yoshii et al. 2012). Basically, kasugamycin blocks movement of mRNA through the ribosome, preventing effective interaction with tRNA. <i>Persistence in the Environment</i> See <i>Evaluation Question #4</i> for more information. Evaluation Question #6: Describe any environmental contamination that could result from the petitioned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)). Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins can be recycled. Other items 		
 ribosome, preventing effective interaction with tRNA. <i>Persistence in the Environment</i> See <i>Evaluation Question #4</i> for more information. Evaluation Question #6: Describe any environmental contamination that could result from the petitioned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)). Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins can be recycled. Other items 		0 /· 0
 446 447 Persistence in the Environment 448 See Evaluation Question #4 for more information. 449 450 Evaluation Question #6: Describe any environmental contamination that could result from the 451 petitioned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)). 452 453 Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose 454 or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins can be recycled. Other items 		
 447 Persistence in the Environment 448 See Evaluation Question #4 for more information. 449 450 Evaluation Question #6: Describe any environmental contamination that could result from the 451 petitioned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)). 452 453 Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose 454 or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins can be recycled. Other items 		nooonie, prevening eneeuve interaction whitera and
 See Evaluation Question #4 for more information. Evaluation Question #6: Describe any environmental contamination that could result from the petitioned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)). Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins can be recycled. Other items 		Persistence in the Environment
 449 450 Evaluation Question #6: Describe any environmental contamination that could result from the 451 petitioned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)). 452 453 Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose 454 or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins can be recycled. Other items 		
 450 <u>Evaluation Question #6:</u> Describe any environmental contamination that could result from the 451 petitioned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)). 452 453 Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose 454 or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins can be recycled. Other items 		
 451 petitioned substance's manufacture, use, misuse, or disposal (7 U.S.C. § 6518 (m) (3)). 452 453 Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose 454 or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins can be recycled. Other items 		Evaluation Question #6: Describe any environmental contamination that could result from the
 452 453 Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose 454 or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins can be recycled. Other items 		
 453 Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose 454 or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins can be recycled. Other items 		
454 or corn steep liquor, acids, bases, and ion exchange resins. Ion exchange resins can be recycled. Other items		Manufacturing of the petitioned substance involves only mineral salts, organic feedstocks such as maltose

456 457 458	waste is hazardous – see <i>Evaluation Question</i> #2 for more information. Effects of use and misuse are covered in <i>Evaluation Question</i> #8. Disposal of kasugamycin is done according to labeled instructions for use as a pest control product.
459 460 461 462 463 464 465	Most of the environmental contamination from sprays is found on soil, soil vegetation, and in water. About 41–70 percent of spray applications are lost to the environment through runoff from vegetation and pesticide drift. About half of amounts applied to foliage end up on the soil and vegetation below the trees (NYS 2015). The active ingredient kasugamycin hydrochloride is water soluble and mobile in soil and can travel to water. Up to five percent could end up in surface water. When kasugamycin reaches surface water, most of it stays in the water; very little is bound to sediment (Huang et al. 2010; NYS 2015).
466 467 468 469	Analysis of irrigation water in rice paddies where kasugamycin was applied showed kasugamycin water contamination of <2 ppm (Sheu et al. 2010).
470 471 472 473 474 475 476	In one experiment, river water microcosms containing sediment were treated with kasugamycin at 168.7 mg/liter (700 times the field application rate) and 1462.9 mg/liter (6,000 times the field application rate). The pH was 8.1 – note that kasugamycin degrades more quickly in alkaline solutions. After 30 days, 34.1 percent of kasugamycin had degraded at the low application rate. The higher concentration saw only 12.1 percent degradation in 30 days (Huang et al. 2010). The researchers also found the microbial spectrum in water was affected by kasugamycin. See <i>Evaluation Question #8</i> for more information.
477 478 479	Other researchers found the half-life in water was about seven days and the half-life in sediment was 108 days (NYS 2015; U.S. EPA 2013). See <i>Evaluation Question</i> #4 for more information on kasugamycin persistence.
480 481 482 483 484	There is very little air pollution after aerosols from the spray settle out. Kasugamycin hydrochloride in the formulation is not volatile when residues dry on surfaces, forming a salt. Kasugamycin hydrochloride does not volatilize appreciably from water. See <i>Evaluation Question</i> #4 for more information.
485 486 487	Kasugamycin hydrochloride is much more soluble in water than octanol and is not expected to bioaccumulate in aquatic organisms. See <i>Evaluation Question</i> #4 for more information.
488 489 490	<u>Evaluation Question #7:</u> Describe any known chemical interactions between the petitioned substance and other substances used in organic crop or livestock production or handling. Describe any environmental or human health effects from these chemical interactions (7 U.S.C. § 6518 (m) (1)).
491 492 493 494 495 496 497	Kasugamycin solutions are acidic and will interact with any alkaline plant protection formulations. Kasugamycin and its solutions are incompatible with alkaline tank mixes (U.S. EPA 2005; U.S. EPA 2018). Since lime sulfur sprays are alkaline, kasugamycin sprays would interact. As lime sulfur is used early in the blooming period for blossom thinning, kasugamycin could be applied later to avoid interference (Johnson and Temple 2013).
497 498 499 500 501 502	Kasugamycin is an antibiotic and might interfere with some bacterial biocontrol agents (i.e., bacteria used to control plant pathogens). In integrated programs, kasugamycin is applied later in the bloom period to prevent killing bacterial biocontrol agents (Stockwell et al. 2008; Johnson et al. 2008). See <i>Evaluation Question</i> #11 for more information.
503 504 505 506 507	Fixed coppers are applied in the dormant and early prebloom period to prevent fire blight spreading from overwintering cankers. Fixed coppers are not phytotoxic because copper hydroxide and other fixed coppers have low solubility at neutral pH (Dupont 2019). However, kasugamycin sprays are acidic and could cause phytotoxicity due to release of copper ions. Interaction would be minimized if kasugamycin were applied later in the blooming period.
508 509	Copper is generally compatible with yeasts but not with bacterial biocontrols. Potential phytoxicity is also

510 an issue when copper is used simultaneously with an acidic buffer, such as one needed in Blossom

511 ProtectTM biocontrol (Adaskaveg et al. 2019b; Dupont 2019). See Evaluation Question #11 for more 512 information. . 513 514 Insecticides that might be used with organic apples and pears include soap, oil, spinosad, neem oil, Bacillus thuringiensis (BT), codling moth virus, pheromones, kaolin, and natural pyrethrins. Soap, horticultural oil, 515 516 neem oil, and kaolin are not generally applied to blossoms, as "[m]ost insecticides should not be applied 517 during bloom" (Pfeiffer 2017). Kasugamycin sprays, however, are applied to blossoms – see Evaluation 518 Question #11 – and should therefore not interfere with these insecticides. BT is a formulation of protein 519 crystals and spores that contains no living microbes, so kasugamycin should not interfere. The spinosad 520 label makes no mention of chemical interactions with kasugamycin (U.S. EPA 2020b). 521 522 Organic fungicides include oil, soap, induced systemic materials (i.e., materials that induce systemic 523 resistance in plants against pathogens), and microbials. Again, oil and soap are not generally applied to 524 blooms. Microbial interference was discussed above (Pfeiffer 2017). 525 526 Induced systemic materials for fire blight are usually applied as a trunk paint, tree injection, or a foliar spray (Acimovic et al. 2017b). Potential for these materials' interaction with kasugamycin is low due to the 527 528 latter's application on foliage. The induced systemic material acibenzolar-S-methyl (ASM) is compatible 529 with streptomycin and increases its efficacy (Maxon-Stein et al. 2002). 530 531 Kasugamycin is formulated to kill bacteria. Bacterial antibiotics should have no effect on viruses; thus, 532 codling moth virus should be compatible unless it is destroyed by acidic solutions. Codling moth virus 533 used on pear and apple is usually applied after bloom (Pfeiffer 2017). 534 535 Evaluation Question #8: Describe any effects of the petitioned substance on biological or chemical 536 interactions in the agro-ecosystem, including physiological effects on soil organisms (including the salt 537 index and solubility of the soil), crops, and livestock (7 U.S.C. § 6518 (m) (5)). 538 539 When kasugamycin is sprayed on fruit trees, about half of it ends up on soil and soil vegetation. Some of it 540 leaves the site through pesticide drift, and up to five percent ends up in surface water (NYS 2015). As a 541 result, the EPA Chronic Risk Quotient is exceeded for mammals that graze on grass and forbs or consume 542 terrestrial invertebrates in the immediate area (U.S. EPA 2013). See Evaluation Question #4 for more 543 information. 544 545 Livestock should not graze on grass exposed to kasugamycin pesticide drift, as it could change their intestinal biome similar to changes found after exposure to streptomycin. Kasugamycin has not been 546 547 evaluated, but spraving orchard grass with streptomycin at concentration levels used for fire blight led to 548 an increase in antibiotic-resistant human pathogens found in sheep grazing on sprayed grass. E. coli 549 resistant to streptomycin, ampicillin, tetracycline, and other antibiotics was found in sheep feces. 550 Streptomycin resistant Staphyloccus was found in sheep nasal cavities (Scherer et al. 2013). To prevent 551 antibiotic resistant pathogens developing from kasugamycin sprays, the Kasumin label bans animal 552 grazing in treated orchards (U.S. EPA 2018). See Evaluation Question #10 for more information. 553 554 Kasugamycin-resistant epiphytic bacteria were found in orchards treated with kasugamycin. McGhee and 555 Sundin (2011) found kasugamycin resistance in 401 bacterial isolates from apple flowers, leaves, and soil samples in treated orchards. Tancos et al. (2017) were not able to find kasugamycin resistant epiphytic 556 557 organisms in New York apples sprayed up to ten times, but the antibiotic changed the microbial spectrum in the orchard. See below. 558 559 560 Huang et al. (2010) studied kasugamycin treatments in river water microcosms containing sediment (as 561 reference in Evaluation Question 6) and found that the microbial spectrum in the water was affected. Some 562 bacteria in the microcosm were resistant to kasugamycin, and populations increased. Others were more 563 susceptible, and populations decreased. 564

565 566 567	Kasugamycin is phytotoxic to apples and pears. Plant damage is seen with more than four applications of kasugamycin per year (Adaskaveg et al. 2011).
568 569 570	The NOSB Crops Subcommittee is interested in microbial resistance to kasugamycin: <i>Is the product susceptible to development of resistance with normal (labeled) use?</i>
571 572 573 574 575 576 577	Normal labeled use of kasugamycin has led to field resistance in several pathogens. Kasugamycin was first used to control diseases of rice in Japan starting in 1965 with rice blast caused by <i>Magnaporthe grisea</i> (<i>Pyricularia oryzae</i>). Field resistance of rice blast was noticed in 1971. Kasugamycin was also used for rice bacterial grain and seedling rot caused by <i>Burkholderia glumae</i> and for rice bacterial brown stripe caused by <i>Acidovorax avenae</i> subsp. <i>avenae</i> . Field resistance to <i>Acidovorax</i> sp. occurred in 1990. Field resistance to <i>B. glumae</i> was observed in 2001 (Yoshii et al. 2012).
578 579 580	In Florida, rapid field resistance to kasugamycin was seen with bacterial spot of tomato caused by <i>Xanthomonas perforans</i> (Vallad et al. 2010).
581 582 583 584 585 586 586 587	In orchards that had been treated at least once with kusugamycin, McGhee and Sundin (2011) were able to find resistant bacteria in 401 field isolates from apple flowers and leaves and orchard soil samples. The authors stated, "Although we have not established the presence of a transferrable Ks ^R gene [kasugamycin resistance gene] in orchard bacteria, the frequency, number of species, and presence of Ks ^R enterobacterial species in orchard samples suggests the possible role of nontarget bacteria in the future transfer of a Ks ^R gene to <i>E. amylovora.</i> "
588 589 590 591 592 593 594 595 596	On the other hand, Tancos et al. (2017) were not able to find kasugamycin-resistant epiphytic microbes in New York apple orchards sprayed up to ten times. However, kasugamycin reduced the total numbers of bacterial epiphytes and changed the microbial distribution in the orchard. There were larger numbers of <i>Pantoea</i> sp. and smaller numbers of <i>Pseudomonas</i> sp. The authors found increased numbers of <i>Pantoea</i> sp. concerning because <i>Erwinia</i> streptomycin resistance likely originated on transposon Tn5393 of <i>Pantoea</i> sp. They questioned whether <i>P. agglomerans</i> – "the predominant epiphytic bacteria following kasugamycin application" – could provide resistance genes against streptomycin or, potentially, kasugamycin (Tancos et al. 2017).
597 598 599 600 601	Tancos et al. (2017) did not check for kasugamycin-resistant soil samples. But McGhee and Sundin (2011) found kasugamycin resistant soil bacteria in Michigan orchards. Kasugamycin-resistant epiphytic and soil bacteria provide a reservoir of resistant bacteria and could provide a pathway for horizontal transmission of resistance to <i>Erwinia</i> .
602 603 604 605 606	Field resistance of <i>Erwinia</i> to kasugamycin has not been seen with normal, labeled use, but kasugamycin was only registered for fire blight in 2014, and it was only registered in California in 2018. The Kasumin formulation was first registered with the EPA in 2018. The EPA considers resistance a possibility, and resistance management schemes are required by the label (U.S. EPA 2018).
607 608 609 610 611 612	<i>Erwinia</i> resistance to kasugamycin has been generated in the laboratory. Antibiotics must be transported inside a bacterial cell to kill it. <i>Erwinia</i> has two separate genes, <i>dpp</i> and <i>opp</i> , that produce proteins dipeptide permease (Dpp) and oligopeptide permease (Opp) that transport kasugamycin into the cell. <i>Erwinia</i> resistance to kasugamycin occurred in the laboratory when either one or both of these genes were altered by mutation (Ge et al. 2018).
613 614 615	McGhee and Sundin (2011) were able to produce kasugamycin resistance to <i>Erwinia</i> in the laboratory. Mutation of the ksgA gene led to <i>Erwinia</i> resistant mutants with reduced fitness due to slower growth rate and reduced virulence to pears.
616 617 618	<u>Evaluation Question #9:</u> Discuss and summarize findings on whether the use of the petitioned substance may be harmful to the environment (7 U.S.C. § 6517 (c) (1) (A) (i) and 7 U.S.C. § 6517 (c) (2) (A)

619 **(i)).**

620 621 When kasugamycin is sprayed in orchards, about half the amount applied ends up on the soil or non-target 622 vegetation near the trees (NYS 2015; U.S. EPA 2013). For use on pome fruit, the EPA Chronic Risk Quotient 623 is exceeded for mammals of all sizes that eat short grass in kasugamycin-treated orchards. The Chronic 624 Risk Quotient is also exceeded for 15g mammals that eat short grass, broadleaf plants, and insects. Similar risks are seen for 35g mammals that eat broadleaf plants and insects (NYS 2015; U.S. EPA 2013). Risks are 625 626 exceeded with small mammals. Presumably, there is some risk for larger animals, as the Kasumin label 627 states, "animal grazing in treated areas is prohibited" (U.S. EPA 2018). 628 629 Kasugamycin is practically non-toxic to non-target terrestrial invertebrates. Acute toxicity to fish, aquatic 630 invertebrates, birds, and mammals is very low. Chronic feeding experiments in birds (NOAEC 450 mg/kg) 631 led to reduced 14-day survival. In mammals (NOAEL 13.7 mg/kg body wt.), the chronic feeding 632 experiments led to reduced body weight and reduced weight gains (U.S. EPA 2013). 633 634 The risk to terrestrial plants is uncertain due to lack of data. Risk to the environment from reduction of microbial populations or changes in microbial distribution are unknown and uncertain (U.S. EPA 2013). 635 636 But antibiotic resistance to kasugamycin has been seen in orchard microbials (McGhee and Sundin 2011); 637 see Evaluation Question #10 for more information. 638 639 Kasugamycin is not expected to pose risks to wild mammals, birds, earthworms, honey bees and aquatic organisms at the proposed use rates. Because of a risk to plants, a buffer zone is required in Canada to 640 minimize potential for exposure to off-field drift (Canada 2012). A similar buffer zone is required in the 641 642 U.S. (U.S. EPA 2013). 643 644 None of the dicots tested by the EPA had risk quotients that exceeded EPA guidelines. Monocots such as 645 onion and wheat had reduced dry weights when exposed to the test concentration of 0.0925 mg ai/acre 646 (U.S. EPA 2013). 647 648 Kasugamycin has low acute toxicity to birds. The oral LD50 for kasugamycin in Japanese quail is >4,000 649 mg/kg. For the bobwhite quail, *Colinus virginianus*, the number is >2,000 mg/kg (PubChem 2020a). For zebra finch, the oral LD50 is >2000 mg/kg. For mallard duck, the LD50 is >2000 mg/kg; below this value, 650 loss of body weight was observed. In chronic five-day feeding, the LC50 for mallard duck was >4,858 ppm. 651 652 This concentration is classified as slightly toxic. Body weight changes were noticed at 581 ppm. These 653 concentrations are ten times those expected from application at label rates (NYS 2015; U.S. EPA 2013). 654 655 The LD50 for acute contact toxicity in the honey bee is >100 microgram (mcg)/bee. The acute oral LD50 is 656 30.3 mcg/bee. For comparison, the oral LD50 for neonicotinoids is 3-5 ng/bee, and neonicotinoids are 657 about 10,000 times more toxic. There is low kasugamycin toxicity to earthworms, as the EC50 is >1,000 658 mg/kg (U.S. EPA 2013). 659 660 Water Contamination 661 The Kasumin label states, "Do not apply directly to water, or to areas where surface water is present or to intertidal areas below the mean high water mark" (U.S. EPA 2013). 662 663 664 Up to five percent of applied amounts of kasugamycin move into in surface water. Kasugamycin had the largest harmful effect on aquatic plants, especially blue-green algae. For duckweed, Lemna gibba, frond 665 count was reduced with EC50 = 86 ppm. For green algae, Pseudokirchneriella subcapitata, 96-hour cell density 666 was reduced with EC50 of 3.9 ppm. For blue-green algae, Anabaena flos-aquae, 96-hour cell density was 667 reduced with EC50 of 0.65 ppm (NYS 2015). The most sensitive plant tested was blue-green algae, Anabaena 668 sp., with EC50 0.65 ppm and a no-observed-adverse-effect concentration (NOAEC) of 0.08 ppm (U.S. EPA 669 670 2013). 671 672

- Kasugamycin water contamination measured in rice paddy irrigation water was <2 ppm (Sheu et al. 2010).
- 673 Huang et al. (2010) noted bacterial population changes when adding kasugamycin at high rates to river
- 674 water microcosms in the laboratory – see Evaluation Question #8.

675	
676	The EPA states that "[k]asugamycin is classified as practically non-toxic to freshwater and
677	estuarine/marine fish and invertebrates on an acute exposure basis" (U.S. EPA 2013). Kasugamycin has
678	low toxicity to fish as the LC50 for carp is 40 ppm over a period of 48 hours. The value for goldfish is the
679	same (PubChem 2020a). For rainbow trout, acute toxicity over 96 hours was LC50 >120 ppm. For fathead
680	minnow, the value was LC50 >110 ppm (NYS 2015).
681	ninnow, the value was 1000 + 110 ppin (1010 2010).
682	Toxicity to the water flea, <i>Daphnia pulex</i> , is LC50 >40 ppm over a six-hour period (PubChem 2020a). For the
683	water flea, <i>Daphnia magna</i> , EC50 for immobilization over 48 hours was >66.2 ppm (NYS 2015).
684	water nea, Duphniu nugnu, EC50 for minobilization over 46 hours was >00.2 ppm (1(15 2015).
685	Kasugamycin has low toxicity to marine invertebrates and saltwater fish. For sheepshead minnow,
686	<i>Cyprinodon variegatus</i> , the LC50 over a 96-hour exposure was >110 ppm. For mysid shrimp, <i>Americanysis</i>
687	<i>bahia,</i> the LC50 over 96 hours was >100 ppm (NYS 2015).
688	
689	<u>Evaluation Question #10:</u> Describe and summarize any reported effects upon human health from use of the metilizing deviation (714.5×10^{-6}) (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2
690	the petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (i), 7 U.S.C. § 6517 (c) (2) (A) (i)) and 7 U.S.C. § 6518
691	(m) (4)).
692	Dessible human health effects of heavy annualized action both not onticed and a humanic tourisity manual estima
693	Possible human health effects of kasugamycin cover both potential acute and chronic toxicity, reproductive
694	problems, birth defects, and cancer, as well as potential antibiotic resistance in human pathogens.
695	
696	Kasugamycin has low acute and chronic toxicity to mammals. Human doses are excreted quickly, mostly
697	in the urine, and kasugamycin is not mutagenic and not a likely human carcinogen. More detail is given in
698	<i>Evaluation Question #5.</i> Based on these findings, the EPA established a chronic dietary reference dose (RfD)
699	for kasugamycin in humans of 0.113 mg/kg/day (U.S. EPA 2020).
700	
701	Based on tolerances of 0.04 ppm for tomatoes and 0.2 ppm for pome fruit (Fed Reg 2014), the EPA
702	estimated that likely kasugamycin exposure to the U.S. population as a whole was less than one percent of
703	the RfD. The greatest exposure was in one- to two-year-olds, and this was less than 1.7 percent of the RfD
704	(Fed Reg 2014; NYS 2015).
705	
706	The Kasumin formulations include inerts and a preservative and have more toxicity warnings than the
707	technical kasugamycin hydrochloride evaluated by the EPA in 2005. Kasumin 2L contains 2.3 percent
708	kasugamycin hydrochloride hydrate (CAS 19408-46-9), 4.85 to 5 percent secondary alcohol ethoxylate (CAS
709	84133-50-6), and 0.1 percent 1,2-benzisothiazolone (CAS 2634-33-5) (Kasumin 2015). All of these are skin
710	irritants. The thiazolone can cause serious eye damage, is a skin sensitizer, "may cause an allergic skin
711	reaction," and can cause acute aquatic damage. The Safety Data Sheet warns that the formulation "may
712	damage fertility or the unborn child" and is "very toxic to aquatic life" (Kasumin 2015). These inerts would
713	not be allowed in an organic formulation. They do not appear on EPA List 4 (U.S. EPA 2004). The fertility
714	and birth defect caution are for technical kasugamycin hydrochloride, discussed above and in Evaluation
715	Question #5.
716	
717	Occupational risks from application of Kasumin 2L are not of a concern if label directions for protective
718	equipment are followed. These include long sleeves, long pants, chemically resistant shoes, socks, and
719	gloves. Additional protection includes protective eyewear and a NIOSH approved respirator. The label
720	requires a reentry interval of 12 hours. Exposure to residues from commercial applications to residential
721	fruit trees is not a concern (Canada 2012).
722	
723	Accidental poisonings – assumedly via ingestion – have apparently occurred because PubChem lists
724	emergency detox procedures. Poisonings cause respiratory distress and pulmonary edema. Seizures may
725	also occur, which are treated with diazepam. Hypovolemia is treated with Ringers solution. If
704	

- kasugamycin solutions make contact with the eyes, they are to be treated with saline (PubChem 2020a).
- 727

728 From evaluation of all the toxicology tests, the EPA concluded that "there is a reasonable certainty that no 729 harm will result to the general population or to infants and children from aggregate exposure to 730 kasugamycin residues" (Fed Reg 2014). 731 732 Antibiotic Resistance 733 Antibiotic resistance is a human health problem. According to the Centers for Disease Control (CDC 2013), 734 at least two million people in the United States experience serious bacterial infections that are resistant to at 735 least one type of antibiotic. At least 23,000 die as a direct result of these infections, while others die from 736 conditions that were worsened due to infections with antibiotic-resistant bacteria. 737 738 Though kasugamycin is an antibiotic and has been used in human and veterinary medicine in the past, at 739 present "there are no human or veterinary uses of kasugamycin as an antibiotic" (U.S. EPA 2013). 740 Although classical toxicology tests suggest that human health effects from label applications of 741 kasugamycin are not likely, there could be a possibility of antibiotic resistance or cross resistance. This 742 problem has been seen with streptomycin. According to Sundin and Bender (1996), "[streptomycin-743 resistant] gene transfer events between human, animal, and plant associated bacteria have occurred." 744 745 Bacteria become resistant through antibiotic exposure in medicine and in agriculture. Major agricultural 746 exposure comes from feeding antibiotics to animals to increase their growth. Antibiotics are also used to 747 control plant disease in crops (CDC 2013). At least 40 percent of total antibiotic use is in animal feed, but 748 antibiotics used on plants in the U.S. are less than 0.5 percent of the total (McManus et al. 2002). 749 750 Antibiotic Resistance from Crop Applications 751 Antibiotic resistance from antibiotics in animal feed is well established; the CDC would like the addition of 752 antibiotics to animal feed to promote growth to be stopped (CDC 2013). Less research has been conducted 753 on antibiotic-resistant pathogens produced from sprays for plant disease, but the NOP removed 754 streptomycin and tetracycline from the National List, partly due to human health concerns (USDA 2014). 755 Human bacteria could become resistant through exposure from accidents or spray drift, and through 756 dietary exposure. Orchard workers would have the greatest risk of antibiotic resistance from sprays, while 757 the greatest dietary exposure to kasugamycin is about 1.7 percent of the reference dose in one- to two-year-758 olds (NYS 2015; U.S. EPA 2013). 759 760 The Chronic Risk Quotient for mammals grazing in treated orchards is exceeded by kasugamycin sprays 761 (see Evaluation Question #8). Resistant pathogens have been found in animals grazing on orchard grass 762 treated with label rates of streptomycin (Scherer et al. 2013). Orchard antibiotic sprays could encounter 763 pathogens in animal manure used as fertilizer. The Kasumin label does not allow animals to graze in 764 treated areas or application of manure where contact with the antibiotic is possible (U.S. EPA 2020). 765 766 Antibiotic sprays could encounter human pathogens in the environment. "Opportunistic animal pathogens such as Pseudomonas aeruginosa and Burkholderia (Pseudomonas) cepacia are ubiquitous in the environment 767 768 and strains of both species are known to be phytopathogenic" (Sundin and Bender 1996). Some clinical isolates of Pseudomonas aeruginosa are resistant to most antibiotics (Livermore 2002). Orchard sprays might 769 770 cause resistance in epiphytic bacteria that then cause resistance in other bacteria through transmission of 771 mobile genetic elements such as plasmids and transposons (von Winterdorf et al. 2016). 772 773 Spraying Orchards Can Cause Resistant Bacteria 774 Could kasugamycin orchard sprays lead to bacteria that harbor antibiotic resistance genes? Such is the case 775 with other antibiotics. Spraying orchards with streptomycin and tetracycline can lead to resistant bacteria, 776 such as Pantoea agglomerans. These bacteria can release transposons and plasmids that can confer resistance

to environmental pathogens such as *Erwinia amylovora*. The same genetic elements that cause resistance in

plant pathogens can cause resistance in human pathogens (McGhee et al. 2011; O'Brien 2002; Sundin 2002;

779 Sundin and Bender 1996; USDA 2014).

780

Erwinia amylovora, the organism that causes fire blight, has developed field resistance from repeated applications of streptomycin to apple and pear orchards (Sundin 2014). Fire blight resistance to

Crops

- streptomycin can come from resistance genes on transposon Tn5393 from *Pantotea* sp. But it can also come
 from mutations in the *Erwinia* chromosome and resistance genes strA and strB on plasmids. "The strA and
- strB genes and Tn5393 are widely distributed among gram-negative bacterial pathogens of humans,
 animals, and plants, and among environmental bacteria from many diverse habitats" (Forster 2015).
- 787
- As might be expected from a complex phenomenon, research results are sometimes contradictory.
- 789 Resistance genes to streptomycin have been found in treated orchards in Germany. But another study
- found no difference between treated and untreated German orchards. Studies have often not been
- replicated or are lacking in controls (Yashiro and McManus 2012). Yashiro and McManus (2012) even
- found a higher level of streptomycin resistance in bacterial populations of unsprayed orchards. Yashiro
- and McManus (2012) concluded that the unsprayed orchards had high levels of *Pseudomonas* and
 Sphingomonas that were already resistant to streptomycin.
- 795
- Stockwell and Duffy (2012) cite several experiments where environmental sprays of antibiotics did not lead
 to resistance in environmental microbes. Some of the antibiotics used were inactivated by soil.
- 798 799 Animal Exposure to Orchard Sprays
- 800 About half of orchard antibiotic foliage sprays drift away and land on soil or nearby vegetation (NYS 2015;
- 801 U.S. EPA 2005). Kasugamycin has not been evaluated to determine if its use for orchard sprays would lead
- 802 to kasugamycin-resistant pathogens in animals grazing orchard grass, but spraying orchard grass with
- 803 streptomycin at concentration levels used for fire blight leads to an increase in antibiotic-resistant human
- pathogens found in sheep grazing on sprayed grass. Before spraying, feces of control group sheep that
- subsequently grazed on untreated grass had 15.8 percent streptomycin resistant *E. coli*. The feces of the test
- group had 14.7 percent resistant *E. coli*. After spraying, levels were 22.3 percent in controls and 39.9 percent
- 807 in the treated group. The streptomycin resistant *E. coli* was also resistant to several other antibiotics used to
- 808 treat humans, including ampicillin and tetracycline. Streptomycin resistant *Staphylococcus* was found in
- nasal cavities of the treated sheep (Scherer et al. 2013). To prevent pathogens developing from
- 810 kasugamycin sprays, the Kasumin label bans animal grazing in treated orchards (U.S. EPA 2018).
- 811
- Scherer et al. (2013) speculate that streptomycin "may also have effects similar to those observed in sheep
 on people working in streptomycin treated orchards or living in their vicinity."
- 814
- 815 Kasugamycin Sprays
- 816 McGhee and Sundin (2011) found kasugamycin resistance in 401 bacterial isolates from apple flowers,
- 817 leaves, and soil samples in orchards treated with Kasumin. Tancos et al. (2017) were not able to find
- kasugamycin resistant epiphytic organisms in New York apples, but the antibiotic changed the microbial
 spectrum in the orchard; see *Evaluation Question #8*.
- 820
- Yoshii et al. (2012) reported that while "Spontaneous KSM [kasugamycin]-resistant mutants of *E. amylovora*,
 E. coli, and *Bacillus subtilis* harbored mutations in the ksgA methyltransferase gene," the possibility of field
- resistance due to these mutations is low because resistant mutants have low fitness due to decreased
- 824 growth rate and virulence.
- 825
- 826 Resistance to kasugamycin in plant pathogens can be transferred from bacteria in the environment that
- have been exposed to the antibiotic. Aminoglycoside resistance often comes from aminoglycoside N-
- 828 acetyltransferase mostly encoded by plasmids (Yoshii et al. 2012). Resistance of rice pathogens to
- kasugamycin came from a gene causing acetylation of kasugamycin. This gene aac(2')-IIa is located on the
- 830 bacterial chromosome and was likely acquired by horizontal transfer. This gene is specific to kasugamycin
- and did not alter other aminoglycosides (Yoshii et al. 2012).
- 832
- 833 Kasugamycin has only weak activity against a number of human pathogens (Tamamura and Sato 1999).
- Although transfer of resistance genes between microbials is common, Stockwell (2014) states that "a direct
- link between antibiotic use in orchards and antibiotic resistance in human pathogens has not been
- demonstrated." However, the author does not cite any experiments where anyone evaluated this
- 837 possibility. The Kasumin formulation has only been registered since 2018, and kasugamycin has been used

Technical Evaluation Report

Kasugamycin

838 for only a short time in orchards. Further, "the complexity of bacterial population biology and genetics 839 makes it practically impossible to trace bacteria (or resistance factors) from the farm to the hospital, or to directly attribute some fraction of new infections to agricultural antibiotic use" (Smith et al. 2005). 840 841 However, an epidemiological study of antibiotic resistant microbes in organic orchard workers versus those in conventional orchards would be a good start. 842 843 844 Concern for antibiotic resistance led the NOSB Crops Subcommittee to ask the following question: 845 To what class of antibiotics does kasugamycin belong? Are there members of that class that are used in animal or 846 human health and is there any evidence of cross reactivity of that class with other classes used in animal or human 847 health? 848 849 Kasugamycin is an aminoglycoside antibiotic. Many members of this class including streptomycin, 850 neomycin, kanamycin, gentamicin, and others are used as human clinical drugs or in veterinary medicine. 851 Cross-resistance, which occurs when bacterial resistance to one antibiotic causes resistance to another, has 852 been reported within the aminoglycoside class. For instance, kanamycin can be cross-resistant with other 853 aminoglycosides (Rodriquez et al. 1999). Kanamycin can be cross-resistant with streptomycin (Chen et al. 854 2009). Gentamicin can be cross-resistant with other aminoglycosides (Gilleland et al. 1989; Houang and 855 Greenwood 1977). 856 857 Cross-resistance has been found between aminoglycosides and other classes. For example, 858 aminoglycosides and fluoroquinolones can be cross-resistant (Tsukamamoto et al. 2013). Tetracycline or 859 ampicillin can be cross-resistant with kanamycin (Chen et al. 2009). Cross-resistance has been seen between 860 aminoglycosides and beta-lactams (Sanders et al. 1984) and kasugamycin with blasticidin S 861 (aminoacylnucleoside class) (Shiver et al. 2016). Fire blight isolates highly resistant to streptomycin also 862 have reduced sensitivity to oxytetracycline (Adaskaveg et al. 2009). 863 864 Laboratory exposure of Bacillus subtilis to kasugamycin generated two kinds of resistant mutants. One was 865 resistant to kasugamycin effects on protein synthesis. Another had no resistance to effects on protein synthesis but had weak cross-resistance with gentamycin and kanamycin (Tominaga and Kobayashi 1978). 866 867 868 Resistance can arise from changes in membrane permeability, prevention of drug binding, and enzymatic 869 inactivation of the drug molecule. Genes for inactivation enzymes are often carried on bacterial plasmids or 870 transposons. Plasmids and transposons are exchanged by related and unrelated bacteria with horizontal 871 gene transfer (O'Brien 2002; von Wintersdorff et al. 2016). 872 873 Evaluation Question #11: Describe all natural (non-synthetic) substances or products which may be 874 used in place of a petitioned substance (7 U.S.C. § 6517 (c) (1) (A) (ii)). Provide a list of allowed 875 substances that may be used in place of the petitioned substance (7 U.S.C. § 6518 (m) (6)). 876 877 **Biological Controls** 878 Biological controls (biocontrols) combined with sanitation, bloom reduction, and applications of copper can 879 give satisfactory control of fire blight (Adaskaveg 2017a, 2017b, 2017c; Dupont 2019; Johnson and Temple 880 2013). Biocontrols include antagonists such as Pseudomonas fluorescens A506 isolated from pear (BlightBan® A506), Pantoea agglomerans C9-1 isolated from apple (BlightBan C9-1), P. agglomerans E325 isolated from 881 882 apple (Bloomtime BiologicalTM), Bacillus subtilis QST713 (Serenade[®]), and Bacillus amyloliquefaciens D747 883 (Double NickelTM). The best biocontrol by far for preventing fire blight is the yeast *Aureobasidium pullulans* 884 (mixtures of strains DSM 14940 and DSM 14941), or Blossom Protect. Blossom Protect gives reliable results 885 and is highly effective at preventing fire blight (Adaskaveg et al. 2017a; Sundin et al. 2009). 886 887 Biological control can be just as effective as sprays of kasugamycin. On Bartlett pears in California, there

- 888 was no statistical difference in effectiveness between kasugamycin only, Blossom Protect, the copper
- treatment Cueva (copper octanoate), and Cueva plus the biological Serenade (*Bacillus subtilis*) (Adaskaveg
 et al. 2019a).

891

892 For Granny Smith apples under high disease pressure in California, Adaskaveg et al. (2019a) found that 893 Blossom Protect plus acidic buffer was the most effective treatment. Disease incidence was reduced from 894 42.4 percent to 11.1 percent. Kasumin (kasugamycin) alone was slightly less effective than the biological. 895 896 Blossom Protect plus buffer was just as effective as streptomycin or oxytetracycline in Washington State 897 University trials in 2013, 2014, 2016, and 2017. Kasugamycin had effectiveness similar to streptomycin and 898 oxytetracycline in WSU trials 2006, 2009, 2010, 2011 (Dupont 2019). 899 900 Timing of sprays is an important part of effectiveness. Blight forecasting can help decide when to apply 901 biological controls. At least one application should be applied early in the bloom cycle. Applications 902 should also occur when blight forecasting predicts high likelihood of establishment. Treatments should be 903 applied early in the disease risk period (Johnson et al. 2004). Applications should be at least twice between 904 25 and 90 percent bloom (Johnson and Stockwell 1998). 905 906 Some More Effective than Others 907 Some biocontrols are more effective than others. In Michigan, New York, and Virginia, Bloomtime 908 Biological (28.5%) and Blight Ban C9-1 (33.1%) gave better control than Blight Ban A506 (12.5%). But there 909 was a considerable range of effectiveness location to location and year to year (Sundin et al. 2009). 910 911 Adaskaveg et al. (2016) found that Blossom Protect with molasses was effective at high disease pressures 912 for fire blight in California apples. Blossom Protect and copper treatments were more reliable as fire blight 913 treatments in California apples than Double Nickel, Serenade, Regalia (extract of giant knotweed), 914 Actinovate (Streptomyces lydicus), and Bloomtime Biological (Adaskaveg (2017b). 915 916 Antagonists – those biological control agents acting directly on target pests – were more effective at 917 reducing infections than application of avirulent strains of Erwinia (Johnson et al. 2009). Freeze dried 918 applications of antagonists were more effective than application of freshly prepared inoculant (Stockwell et 919 al. 1998). 920 921 Biocontrol More Effective in the West 922 Fire blight biocontrols work better in the western U.S. than in the East. In Michigan, New York, and 923 Virginia, average blight reduction using Blight Ban A506 was about 12 percent. In California and Oregon, 924 A506 fire blight reduction was 40-60 percent. Average fire blight reduction using Blight Ban C9-1 in the 925 East was about 26 percent. In the West standalone treatments were about 40-60 percent effective. The 926 difference is thought to be due to better flower colonization in the West (Sundin et al. 2009). Because more 927 than 90 percent of organic apples are grown in the West, and more than 71 percent are grown in 928 Washington, biocontrol is a major factor in organic apple production (Granatstein and Kirby 2019). 929 930 For instance, in Oregon pears, application of *P. agglomerans* C9-1 (Blight Ban C9-1) at 70 percent bloom 931 reduced fire blight 51 percent in orchards deliberately inoculated with *Erwinia*. In Oregon apples, Blight 932 Ban C9-1 reduced incidence of fire blight by about 49 percent (Johnson et al. 2008). Average fire blight 933 reduction of Blight Ban C9-1 in the East is about 26 percent (Sundin et al. 2009). 934 935 Temperature and Mixtures

- Temperature is an important part of colonization competence. Blight Ban A506 is generally less effective
 than Blossom Protect or Double Nickel. The optimum temperature for *Erwinia* is 24–29°C. BlightBan A506
- than Blossom Protect or Double Nickel. The optimum temperature for *Erwinia* is 24–29°C. BlightBan A506
 works better at lower temperatures, 15–20°C. Optimum temperature for Double Nickel is 20–35°C, for
- 939 Blossom Protect 15–30°C. Blossom Protect and Double Nickel are optimally effective over a larger range of
- 940 temperatures that coincide with the temperature profile of *Erwinia* (Adaskaveg et al. 2017a; Sundin et al.
- 941 2009).
- 942 943 Mixtures of the two BlightBans (A506 and C9-1) controlled fire blight on pears in Washington and Oregon.
- The antagonists reduced growth and establishment of *Erwinia* on blossoms. Sprays were applied either
- 945 two- or four-times during bloom. Effectiveness was greatest with established concentrations of antagonists

946 $>10^5$ cfu/blossom (Johnson et al. 1993). When using mixtures, care must be taken to choose compatible 947 microbes. Some biocontrols are mechanistically incompatible (Stockwell et al. 2011). 948 949 Integrated Organic Programs 950 The major mechanism of fire blight biological control is competitive exclusion. Stockwell et al. (2008) 951 pioneered an integrated pest management (IPM) approach where a biocontrol was first used in early bloom 952 time to colonize flowers in competition with *Erwinia*. Then an antibiotic was applied at full bloom or petal 953 fall. The biological control, P. agglomerans (Bloomtime), was used first followed by oxytetracycline. This 954 suppressed fire blight, but oxytetracycline cannot be used in organic agriculture. An all-organic method 955 was Bloomtime followed by Bacillus subtilis (Serenade). This combination was also effective, but twice as 956 many Serenade sprays were needed compared to oxytetracycline, driving up the cost (Johnson and Temple 957 2013). 958 959 Adaskaveg et al. (2017a) tried many different biological controls in California apple experiments. Blossom 960 Protect or Bacillus amyloliquifaciens (Double Nickel) effectively reduced fire blight. Bacillus subtilis (Serenade 961 Opti) plus the copper product Badge X2 gave a significant fire blight reduction (Adaskaveg 2017a). New 962 materials mentioned that show promise include bacteriophages (Adaskaveg et al. 2019a). 963 964 Antagonists must be compatible with chemicals used for fire blight suppression. Streptomycin suppressed 965 "populations of indigenous bacterial epiphytes" but had little effect on establishment and spread of the 966 biocontrol Blight Ban C9-1 (Johnson et al. 2000). Copper (see below) is compatible with yeast but not with 967 bacterial antagonists (Adaskaveg 2019b). 968 969 Biocontrol microbials are generally thought to produce few problems with health. Many of them are 970 ubiquitous in the environment. Some microbials can cause clinical infections in those with compromised 971 immune systems. Label directions should be followed when they are applied (Mittal et al. 2018; Quarles 972 2013). 973 974 *Copper Treatments* 975 Forms of copper used in apple production include copper sulfate, fixed copper, and soluble copper. 976 Copper sulfate is so soluble it must be mixed with lime to prevent phytotoxicity. Fixed coppers, including 977 copper hydroxide, copper oxychloride and others, are nearly insoluble in water. Applied as dormant 978 treatments, they slowly release copper ion, preventing *Erwinia* from colonizing orchards from 979 overwintering cankers. Soluble coppers such as the copper soap, Cueva, are sometimes applied during the 980 blooming season because copper content of the formulations is low and less likely to cause phytotoxicity 981 (Dupont 2019). 982 983 Copper is less effective at high disease pressures because it does not kill the pathogen, only inhibits its 984 growth. Only low concentrations of copper are registered for fire blight, and the Erwinia organism showed 985 moderate resistance in California (Adaskaveg et al. 2019a). 986 987 Compatibility is a consideration. "Copper is generally incompatible with bacterial biocontrols, but 988 compatible with yeast based products" (Adaskaveg et al. 2019b). However, products such as Cueva with 989 low copper ion concentration are compatible with *Bacillus* based biocontrols in tank mixes (Dupont 2019). 990 991 Fixed coppers such as copper hydroxide and copper oxychloride have a long residual time and copper ions 992 are released slowly from the insoluble material. These are often applied during the dormant period. 993 Because of phytotoxicity, fixed coppers should not be applied with the induced material Fosphite® (see 994 below) or with the Buffer Protect used to enhance the Blossom Protect[™] biological control (Dupont 2019). 995 996 Soluble coppers such as copper octanoate (Cueva) or Previsto (copper ions in an alginate matrix) are 997 formulated at much lower copper concentrations than the fixed copper materials. Because trees are 998 exposed to less copper ion, these formulations can be applied outside the dormant period. Cueva is 999 compatible with Bacillus based biocontrols in tank mixes. Cueva and Previsto gave about 60-70 percent fire 1000 blight control in Washington State University trials (Dupont 2019).

1001 1002 Elkins et al. (2015) applied copper products in the "green tip" physiological stage, which occurs about five 1003 weeks before full bloom. Application at this time prevents pathogen spread from overwintering cankers. In 1004 California pears, horticultural oil plus copper was compared to horticultural oil only. Copper plus oil 1005 produced a sanitation effect, slowing movement of Erwinia from trunk cankers to blooms. Fruit quality was 1006 not affected by the copper treatment. 1007 1008Copper is most often used as a dormant spray, and copper persists on surfaces. However, heavy rainfall 1009 (three inches or greater) washes off all the copper. Application of copper to cankers with the surfactants 1010 Pentrabark or Regulaid was ineffective in reducing bacterial populations (Acimovic and Meredith 2017a). 1011 Shoot Blight Control 1012 1013 Low rates of copper can be used for shoot blight control during the summer. But Acimovic et al. (2017a) 1014 found that two sprays of 0.196 lb copper per acre provided poor fire blight protection when applied as 1015 bloom time sprays in New York apples. Once bacteria enter and "establish in flowers, shoots, and wood 1016 tissue, sprayed bactericides have no effect." 1017 Fire blight infection of blooms is less common in Illinois due to the cooler climate and shorter bloom 1018 1019 periods. Instead, shoot blight infections are more common due to trees being damaged during storms. In 1020 Illinois apple orchards, Kocide (copper hydroxide) combined with either mancozeb or oxytetracycline was 1021 not effective in reducing shoot blight infection. Other materials such as streptomycin, P. fluorescens A506, 1022 and Bacillus subtilis QST713 (Serenade) were also not effective, but ksugamycin controlled shoot blight 1023 (Jurgens and Babadoost 2013). 1024 1025 Induced Resistance 1026 Some success has been seen with sprays, trunk paints and injections of materials that cause systemic 1027 acquired resistance (SAR). Plants have immune systems controlled by salicylic acid. Salicylic acid causes 1028 release of proteins that fight infection. SAR materials that have been tested for fire blight include acibenzolar-S-methyl (ASM), Regalia (extract of giant knotweed, Reynoutria sachalinensis), salts of 1029 1030 phosphorous acid (Fosphite), and others (Acimovic 2015; Johnson and Temple 2016). Regalia is allowed in 1031 organic agriculture; the active ingredients for ASM and Fosphite would have to be added to the National 1032 List of Allowed Synthetics. 1033 1034 Foliar sprays or injections of acibenzolar-S-methyl can reduce fire blight infections. Optimal use of ASM 1035 may be to prevent the spread of fire blight from areas of excised cankers. Johnson and Temple (2016) tested 1036 root drenches, trunk paints or foliar sprays on greenhouse apple trees grown in pots. Trees were inoculated 1037 with fire blight. ASM treatments reduced canker expansion by 22-25 percent. Root drenches were more 1038 effective before inoculation, trunk paints were most effective at inoculation, foliage sprays had variable 1039 timing effects. Trunk paints were the most effective application method. Painting pruning areas could help 1040 reduce infection as trees are pruned to remove infection (Johnson and Temple 2016). 1041 1042 In field experiments with 3- to 14-year old apple and pear trees, painting the pruning site with ASM 1043 "yielded 62% less diseased wood" over a five-year period (Johnson and Temple 2017). 1044 1045 Air blast sprayer losses of liquid formulations into the environment are 44-71 percent (Acimovic 2015). To 1046 reduce losses of SAR materials, trunk injections can be used instead of sprays. Trunk injections of SAR materials into the xylem in some circumstances can reduce shoot blight. Injections cause production of 1047

1048 chitinase and glucanase enzymes that destroy *Erwinia*. In New York apples, trunk-injected Fosphite

produced 55.9 percent fire blight control, similar to streptomycin (61 percent) when disease pressure was
 moderate. ASM produced statistically similar results (42.2 percent). Control with Fosphite was less

1051 (25.1 percent) under high disease pressure. Resistance genes were expressed less in flowers than leaves.

1052 Fire blight suppression was better on shoots than flowers.

1053

Acimovic and Meredith (2017b) tried foliar sprays and trunk injections of induced resistance materials on
 apple trees in New York under high disease pressure. Materials included Regalia (*Reynoutria sachalinensis*),

1056 Prestop (Gliocladium catenulatum J1446), B. amyloliquefaciens F727, mixtures of copper (CS2005) and Regalia, 1057 streptomycin and oxytetracycline. Overall, the induced materials provided poor blossom and shoot blight 1058 control. Regalia and B. amyloliquefaciens produced the most russeting. 1059 1060 Evaluation Question #12: Describe any alternative practices that would make the use of the petitioned 1061 substance unnecessary (7 U.S.C. § 6518 (m) (6)). 1062 1063 Fire blight spreads in orchards from overwintering cankers on the trees. The bacterial pathogen, Erwinia 1064 amylovora, is dispersed by insects and rainfall to blossoms. Infected blossoms and trees wounded by storms 1065 in the spring produce endophytic populations of bacteria, causing infected fruit and summer outbreaks of 1066 rootstock and shoot blight. New cankers form on branches and stems in autumn, completing the life cycle 1067 (Dupont 2019; Norelli et al. 2003). 1068 1069 The alternative to kasugamycin is an integrated organic program that attacks fire blight at every point in its 1070 life cycle. As part of the program, resistant species of apples and pears are planted. Unfortunately, most of 1071 the commercial varieties popular with consumers are susceptible to fire blight. Growers are not inclined to 1072 plant resistant species unless produce is commercially viable. However, there has been a movement toward using resistant rootstocks. Resistant rootstocks can help prevent rootstock blight that occurs at the graft 1073 1074 union (Norelli et al. 2003). 1075 1076 Other components of an integrated organic program are cultural controls that include pruning, no 1077 irrigation during bloom time, and proper management of weeds and cover crops to reduce relative 1078 humidity (Dupont 2019; Pfeiffer 2017). Effectiveness of pruning can be increased by application of induced 1079 systemics (Johnson et al. 2017; Dupont 2019). See Evaluation Question #11 for more information. 1080 1081 Cultural controls can be combined with application of fixed copper sprays in dormant and prebloom 1082 periods, thinning of blossoms, application of biological controls such as Blossom Protect during bloom 1083 time, and application of biocontrol antagonists such as Serenade later in the blooming period (Adaskaveg 1084 2017a, 2017b, 2017c; Johnson and Temple 2013). The integrated organic program can reduce the incidence 1085 of fire blight in apples by 90 percent or more (Johnson and Temple 2013). 1086 1087 Much better results are obtained by the addition of biocontrols to an integrated organic program. In 1088 Oregon, organic management of apples and pears gave results equal to conventional management. The 1089 best treatment in apples was two applications of lime sulfur at 30 percent and 70 percent bloom followed 1090 by two sprays of Aureobasidium pullulans (Blossom Protect). Lime sulfur alone reduced fire blight by 1091 48 percent. Lime sulfur plus Blossom Protect gave a 91 percent reduction. This all-organic program was 1092 just as effective as a single spray of streptomycin (Johnson and Temple 2013). 1093 1094 Lime sulfur cannot be used in pears because of russeting. But in Bartlett pears, Golden Delicious, Gala, and 1095 Rome Beauty apples, two applications of Bloomtime Biological in early bloom followed by Blossom Protect 1096 at full bloom gave 86 percent fire blight reduction (Johnson and Temple 2013). 1097 1098 Copper sprays, by sanitizing surfaces and inhibiting reproduction of *Erwinia*, help prevent the spread of 1099 fire blight from cankers to blooms. The yeast Blossom Protect colonizes blossoms and prevents infection of 1100 Erwinia mainly by competitive exclusion. The antagonist Bacillus subtilis QST713 (Serenade) produces 1101 antibiotic substances that suppress the pathogen later in the blooming period (Johnson and Temple 2013; 1102 Stockwell et al. 2008); see Evaluation Question #11. 1103 1104 Thinning blossoms alone can reduce incidence of fire blight in apples by about 50 percent (Johnson and 1105 Temple 2013). Thinning can be done by hand, but it is very labor intensive. Lime sulfur was used 1106 successfully for blossom thinning in Oregon apples, and researchers recommend that registration of lime 1107 sulfur for thinning should be pursued in all states where organic apples are grown (Johnson and Temple 1108 2013). 1109

1110 1111 1112 1113 1114	The integrated organic program works best on the West Coast where biocontrols are more effective. It works better for apples than pears because due to russeting, lime sulfur cannot be used on pears to thin blossoms (Johnson and Temple 2013). See <i>Evaluation Question</i> #11 for more information.
1115	Focus Areas Requested by NOSB
1116 1117 1118 1119 1120	1. To what class of antibiotics does kasugamycin belong? Are there members of that class that are used in animal or human health and is there any evidence of cross reactivity of that class with other classes used for animal or human health?
1121 1122 1123 1124	As mentioned in <i>Evaluation Question #10,</i> kasugamycin is an antibiotic in the aminoglycoside class. Other members of this class include streptomycin, neomycin, and kanamycin—antibiotics that are often used in medicine and in veterinary practice (CDC 2013).
1125 1126 1127 1128	Cross resistance occurs when bacterial resistance to one antibiotic causes resistance to another. Cross- resistance between members of the aminoglycoside class has been documented. Cross-resistance between kasugamycin and other aminoglycosides has not been seen (Chen et al, 2009; Gilleland et al. 1989; Rodriguez et al. 1999).
1129 1130 1131 1132 1133 1134	Cross-resistance between aminoglycosides and antibiotics of other classes has been found (Chen et al. 2009; Sanders et al. 1984; Tsukamamoto et al. 2013). Cross-resistance between kasugamycin and members of other antibiotic classes is extremely rare. But cross-resistance has been seen between kasugamycin and blasticidin S, an aminoacyl nucleoside antibiotic (Shiver et al. 2016).
1134 1135 1136 1137	2. How does the timing (i.e. bloom, petal fall, post bloom) of kasugamycin application affect the potential for residue in the fruit at harvest and are there any residues of this antibiotic in fruit at harvest?
1138 1138 1139 1140 1141 1142 1143 1144 1145 1146	Kasugamycin is applied only while the fruit trees are in bloom. There is a 90-day preharvest interval for pome fruit that is mandated by the Kasumin pesticide label (U.S. EPA 2018). During this time, residue levels drop to about 1/1000 of the amounts applied (PubChem 2020a; NYS 2015). Tolerance levels for kasugamycin on apples, pears, and other pome fruit are 0.2 ppm (Fed Reg 2014). Residues on fruit at harvest should range between 0.02 and 0.2 ppm (Stockwell 2014). These concentrations are well below established EPA toxicity thresholds. Whether these very low residue levels can contribute to antibiotic resistance in human pathogens is unknown or uncertain. One mitigating factor is that kasugamycin is not used in humans or in veterinary medicine (U.S. EPA 2013).
1147 1148	More detailed answers to this question are given in <i>Evaluation Question</i> #4.
1149 1150	3. Is this product susceptible to development of resistance with normal (labelled) use?
1151 1152 1153 1154 1155 1156	Kasugamycin has been in agricultural use since 1965. It has been used against a number of plant pathogens. In every instance, some level of resistance has occurred (Vallad et al. 2010; Yoshii et al. 2012). The EPA believes that resistance of the fire blight pathogen <i>Erwinia amylovora</i> to kasugamycin is possible, and the Kasumin label requires a resistance management plan. This plan includes use of kasugamycin as part of an IPM program and less than four applications per year (U.S. EPA 2018).
1157 1158 1159 1160	Resistance of epiphytic bacteria and soil bacteria in orchards has been seen. There is some concern that these resistant bacteria might act as a harbor for mobile genetic elements such as transposons that could cause the pathogen <i>Erwinia amylovora</i> to become resistant (McGhee and Sundin 2011).
1160 1161 1162	More detailed answers to this Question are given in <i>Evaluation Question</i> #8.
116 <u>2</u> 1163 1164	4. Compare the positive and negative impacts of alternatives with the potential positive and negative impacts of the use of kasugamycin.

1165 1166 Positive and Negative Impacts of Alternatives Positive impacts of using an integrated organic program are that it can be very effective, and components 1167 of the program have low negative effects on the environment. The current all-organic program can be more 1168 1169 than 90 percent effective in preventing fire blight in apples on the West Coast where 90 percent of organic apples are grown (Granatstein and Kirby 2013; Johnson and Temple 2013). 1170 1171 1172 There are negative impacts of using an integrated organic program. Lime sulfur, a synthetic active 1173 approved for use in organic production for plant disease control, cannot be used on pears. Growers must 1174 use hand thinning, which is labor intensive. Antagonists such as *B. subtilis* (Serenade) are used in 1175 integrated organic programs. Repeated sprays of B. subtilis toward the end of bloom can drive up costs (Stockwell et al. 2008; Johnson and Temple 2013). 1176 1177 1178 In eastern states, biocontrol is less effective. Growers are experimenting with sprays of soluble copper 1179 during the summer, and applications of induced systemic materials. Results have been less reliable than 1180 situations where biocontrols have good efficacy. Fire blight can still be managed except in cases of high 1181 disease pressure (Acimovic 2015; Acimovic 2017a; Acimovic 2017b). Researchers in California have identified moderate copper resistance in the fire blight bacteria, which lessens the effectiveness of copper 1182 1183 (Adaskaveg 2019a). Copper is an elemental metal, which is persistent in the environment. Intensive use can 1184 result is elevated soil levels in some soil types and regions (USDA 2011). For more information, see 1185 Evaluation Question #11. 1186 1187 Organic growers have been forced to develop alternatives to antibiotics only since 2014. There is a learning 1188 curve, and new materials such as phages have been introduced (Adaskaveg 2019a). 1189 1190 Positive Impacts of Kasugamycin 1191 Kasugamycin is relatively inexpensive and effective because the fire blight organism has not developed 1192 resistance. In eastern states where biocontrols are less effective, and in pear production, where some 1193 components of integrated production are not possible, it could be extremely useful (California Apple 1194 Commission 2020). 1195 1196 If kasugamycin is approved, growers would apply it instead of the second biocontrol in the integrated 1197 organic program. Kasugamycin would be a less expensive alternative. Limiting use of kasugamycin to 1198 sprays late in bloom as part of an integrated program would delay the onset of fire blight resistance 1199 (Johnson and Temple 2013; Stockwell et al. 2008). For more information, see Evaluation Question #8. 1200 1201 Negative Impacts of Kasugamycin 1202 Fire blight has grown resistant to every antibiotic used against it. There is good reason to believe fire blight 1203 will become resistant to kasugamycin. The NOSB and NOP identified several reasons to stop the use of 1204 streptomycin in organic production: resistance is widespread; some organic markets do not allow the use 1205 of antibiotics on apples and pears; and "organic integrity and sales are threatened because of consumer 1206 expectation that antibiotics are not used in organic production" (USDA 2014). These arguments summarize 1207 some of the potential negative impacts of kasugamycin. For more information, see Evaluation Question #8. 1208 1209 Kasugamycin is also phytotoxic. Plant damage limited early use of kasugamycin for fire blight (Adaskaveg 1210 et al. 2011). The Kasumin formulation is less phytotoxic than other formulations and is more effective 1211 (McGhee and Sundin 2011). But there is no guarantee that an organic formulation will be as effective as 1212 Kasumin. 1213

- 1214 Though effective residues of kasugamycin quickly decay, it is classified as moderately persistent to
- 1215 persistent in the environment (U.S. EPA 2013). According to the EPA (2013), effects on environmental
- 1216 microbes are unknown and uncertain. Kasugamycin sprays, however, are known to change the microbial
- 1217 spectrum of orchards. For more information, see *Evaluation Question* #4. Environmental effects are
- 1218 generally low level. But the EPA Chronic Risk Quotient for mammals grazing in treated orchards would be
- 1219 exceeded. Also, some aquatic plants could be threatened. For more information, see *Evaluation Question* #9.

Crops

1220 1221 1222	Tancos et al. (2017) found the increased numbers of <i>P. agglomerans</i> a concern, as this microbe is known to transfer a transposon that carries antibiotic resistance. For more information, see <i>Evaluation Question</i> #8.
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234	There is evidence that antibiotic use in animal feed can lead to antibiotic resistant human pathogens. The likelihood of kasugamycin use causing antibiotic resistance in human pathogens is uncertain. According to Stockwell (2014), "a direct link between antibiotic use in orchards and antibiotic resistance in human pathogens has not been demonstrated." However, a direct link has been found with sheep grazing on orchard grass treated with streptomycin. Sheep in treated orchards had greater numbers of antibiotic resistant <i>E. coli</i> and <i>Staphylococcus</i> than those grazing on untreated grass (Scherer et al. 2013). According to the EPA (2013), the likelihood of a plant antibiotic causing resistance in a human pathogen is low, but not zero. Designing experiments to test this possibility would be very difficult (Smith et al. 2005). With this said, an epidemiological study of antibiotic resistant microbes in organic orchard workers versus those in conventional orchards would be a good start. For more information, see <i>Evaluation Question #10</i> .
1235	Report Authorship
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247	 The following individuals were involved in research, data collection, writing, editing, and/or final approval of this report: William Quarles, Ph.D., Executive Director, Bio-Integral Resource Center (BIRC), Berkeley, CA. Emily Brown Rosen, M.S., Organic Research Associates. Doug Currier, M.Sc., Technical Director, The Organic Materials Review Institute (OMRI) Lindsay Kishter, Director, Nexight Group Rachel Lanspa, Communications Consultant, Nexight Group
1247 1248 1249	Personal Conflicts of Interest for Contractor Employees Performing Acquisition Functions.
1248 1249 1250	Personal Conflicts of Interest for Contractor Employees Performing Acquisition Functions. References
1248 1249 1250 1251 1252 1253 1254	
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257	References Acimovic, S.G. and C.L. Meredith. 2017a. "Evaluation of dormant copper sprays with bark penetrating surfactants in reduction of <i>Erwinia amylovora</i> in cankers and of low-rate copper sprays in blossom
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261	References Acimovic, S.G. and C.L. Meredith. 2017a. "Evaluation of dormant copper sprays with bark penetrating surfactants in reduction of <i>Erwinia amylovora</i> in cankers and of low-rate copper sprays in blossom blight control." <i>Fruit Quarterly</i> 25(3): 15-20. 2017b. "Evaluation of newer biologicals and the SAR-activator Regalia in fire blight control applied by
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264	 References Acimovic, S.G. and C.L. Meredith. 2017a. "Evaluation of dormant copper sprays with bark penetrating surfactants in reduction of <i>Erwinia amylovora</i> in cankers and of low-rate copper sprays in blossom blight control." <i>Fruit Quarterly</i> 25(3): 15-20. –. 2017b. "Evaluation of newer biologicals and the SAR-activator Regalia in fire blight control applied by spraying or trunk injection." <i>Fruit Quarterly</i> 25(4): 25-29. Winter 2017. Acimovic, S.G., Q. Zeng, G.C. McGhee et al. 2015. "Control of fire blight (<i>Erwinia amylovora</i>) on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268	References Acimovic, S.G. and C.L. Meredith. 2017a. "Evaluation of dormant copper sprays with bark penetrating surfactants in reduction of <i>Erwinia amylovora</i> in cankers and of low-rate copper sprays in blossom blight control." <i>Fruit Quarterly</i> 25(3): 15-20. 2017b. "Evaluation of newer biologicals and the SAR-activator Regalia in fire blight control applied by spraying or trunk injection." <i>Fruit Quarterly</i> 25(4): 25-29. Winter 2017. Acimovic, S.G., Q. Zeng, G.C. McGhee et al. 2015. "Control of fire blight (<i>Erwinia amylovora</i>) on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesis-related protein genes." <i>Frontiers in Plant Science</i> 6: Article 16. Adaskaveg, J.E. 2017. Fire blight management for apples in California, Spring 2017. In: <i>Annual Report 2016-2017 California Apple Commission</i> , Clovis, CA, 27-30. Adaskaveg, J.E., H. Förster and M.L. Wade. 2011. "Effectiveness of kasugamycin against <i>Erwinia amylovora</i> and its potential use for managing fire blight of pear." <i>Plant Disease</i> 95: 448-454.
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267	 References Acimovic, S.G. and C.L. Meredith. 2017a. "Evaluation of dormant copper sprays with bark penetrating surfactants in reduction of <i>Erwinia amylovora</i> in cankers and of low-rate copper sprays in blossom blight control." <i>Fruit Quarterly</i> 25(3): 15-20. –. 2017b. "Evaluation of newer biologicals and the SAR-activator Regalia in fire blight control applied by spraying or trunk injection." <i>Fruit Quarterly</i> 25(4): 25-29. Winter 2017. Acimovic, S.G., Q. Zeng, G.C. McGhee et al. 2015. "Control of fire blight (<i>Erwinia amylovora</i>) on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesis-related protein genes." <i>Frontiers in Plant Science</i> 6: Article 16. Adaskaveg, J.E. 2017. Fire blight management for apples in California, Spring 2017. In: <i>Annual Report 2016-2017 California Apple Commission</i>, Clovis, CA, 27-30. Adaskaveg, J.E., H. Förster and M.L. Wade. 2011. "Effectiveness of kasugamycin against <i>Erwinia amylovora</i>

1274	
1275	Adaskaveg, J.E., D. Thompson, D. Cary et al. 2017. Annual Report 2017, Evaluation of new biological
1276	controls for management of fire blight of apples caused by Erwinia amylovora and evaluation of new
1277	natural products as organic postharvest fungicides for pome fruits. In: Annual Report 2016-2017
1278	California Apple Commission, Clovis, CA, 17-26.
1279	
1280	– . 2019a. Evaluation of new biological controls for management of fire blight of apples caused by <i>Erwinia</i>
1281	<i>amylovora</i> and evaluation of new natural products as organic postharvest fungicides for pome
1282	fruits. In: Annual Report 2018-2019 California Apple Commission, Clovis, CA, 17-29.
1283	11 uno. 11. 11 muuu Report 2010 2015 Cuujomuu 11ppie Commission, Clovis, C1, 17 25.
1284	– . 2019b. Research Plan, 2020. Evaluation of new biological controls for management of fire blight of
1285	apples caused by <i>Erwinia amylovora</i> and evaluation of new natural products as organic postharvest
1285	
	fungicides for pome fruits. In: <i>Annual Report</i> 2018-2019 <i>California Apple Commission</i> , Clovis, CA. 92-
1287	96.
1288	
1289	CA DPR (California Department of Pesticide Regulation). 2020. Database of registered pesticides.
1290	California Department of Pesticide Regulation, Sacramento, CA. <u>https://www.cdpr.ca.gov</u> .
1291	
1292	California Apple Commission. 2020. Petition to add kasugamycin to the National List. California Apple
1293	Commission, Clovis, CA.
1294	https://www.ams.usda.gov/sites/default/files/media/Kasugamycin_Petition.pdf.
1295	
1296	Canada (Canadian Pest Management Regulatory Agency). 2012. Proposed registration decision PRD2012-
1297	30, kasugamycin. Canadian Pest Management Regulatory Agency, Ottawa, Canada. November 27,
1298	2012. https://www.canada.ca/en/health-canada/services/consumer-product-safety/pesticides-
1299	pest-management/public/consultations/kasugamycin-proposed-registration-decision-prd2012-30-
1300	health-canada-consultation-document.html.
1301	
1302	Canada (Canadian General Standards Board). 2020. Organic Production Systems Permitted Substances List.
1303	Canadian General Standards Board, CAN/CGSB-32.311-2020.
1303 1304	
1303 1304 1305	Canadian General Standards Board, CAN/CGSB-32.311-2020. http://publications.gc.ca/collections/collection_2020/ongc-cgsb/P29-32-311-2020-eng.pdf
1303 1304 1305 1306	Canadian General Standards Board, CAN/CGSB-32.311-2020. <u>http://publications.gc.ca/collections/collection_2020/ongc-cgsb/P29-32-311-2020-eng.pdf</u> CDC (Centers for Disease Control and Prevention, U.S. Department of Health and Human Services). 2013.
1303 1304 1305	Canadian General Standards Board, CAN/CGSB-32.311-2020. http://publications.gc.ca/collections/collection_2020/ongc-cgsb/P29-32-311-2020-eng.pdf
1303 1304 1305 1306	Canadian General Standards Board, CAN/CGSB-32.311-2020. <u>http://publications.gc.ca/collections/collection_2020/ongc-cgsb/P29-32-311-2020-eng.pdf</u> CDC (Centers for Disease Control and Prevention, U.S. Department of Health and Human Services). 2013.
1303 1304 1305 1306 1307	Canadian General Standards Board, CAN/CGSB-32.311-2020. <u>http://publications.gc.ca/collections/collection_2020/ongc-cgsb/P29-32-311-2020-eng.pdf</u> CDC (Centers for Disease Control and Prevention, U.S. Department of Health and Human Services). 2013. Antibiotic resistance threats in the United States, 2013. April 23, 2013. Chen, L.X., S. He, C. Li et al. 2009. "Sublethal kanamycin induced cross resistance to functionally and
1303 1304 1305 1306 1307 1308	Canadian General Standards Board, CAN/CGSB-32.311-2020. <u>http://publications.gc.ca/collections/collection_2020/ongc-cgsb/P29-32-311-2020-eng.pdf</u> CDC (Centers for Disease Control and Prevention, U.S. Department of Health and Human Services). 2013. Antibiotic resistance threats in the United States, 2013. April 23, 2013.
1303 1304 1305 1306 1307 1308 1309	Canadian General Standards Board, CAN/CGSB-32.311-2020. <u>http://publications.gc.ca/collections/collection_2020/ongc-cgsb/P29-32-311-2020-eng.pdf</u> CDC (Centers for Disease Control and Prevention, U.S. Department of Health and Human Services). 2013. Antibiotic resistance threats in the United States, 2013. April 23, 2013. Chen, L.X., S. He, C. Li et al. 2009. "Sublethal kanamycin induced cross resistance to functionally and
1303 1304 1305 1306 1307 1308 1309 1310	Canadian General Standards Board, CAN/CGSB-32.311-2020. <u>http://publications.gc.ca/collections/collection_2020/ongc-cgsb/P29-32-311-2020-eng.pdf</u> CDC (Centers for Disease Control and Prevention, U.S. Department of Health and Human Services). 2013. Antibiotic resistance threats in the United States, 2013. April 23, 2013. Chen, L.X., S. He, C. Li et al. 2009. "Sublethal kanamycin induced cross resistance to functionally and
1303 1304 1305 1306 1307 1308 1309 1310 1311	 Canadian General Standards Board, CAN/CGSB-32.311-2020. http://publications.gc.ca/collections/collection_2020/ongc-cgsb/P29-32-311-2020-eng.pdf CDC (Centers for Disease Control and Prevention, U.S. Department of Health and Human Services). 2013. Antibiotic resistance threats in the United States, 2013. April 23, 2013. Chen, L.X., S. He, C. Li et al. 2009. "Sublethal kanamycin induced cross resistance to functionally and structurally unrelated antibiotics." <i>Journal of Experimental Microbiology and Immunology</i> 13: 53-57.
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312	 Canadian General Standards Board, CAN/CGSB-32.311-2020. http://publications.gc.ca/collections/collection_2020/ongc-cgsb/P29-32-311-2020-eng.pdf CDC (Centers for Disease Control and Prevention, U.S. Department of Health and Human Services). 2013. Antibiotic resistance threats in the United States, 2013. April 23, 2013. Chen, L.X., S. He, C. Li et al. 2009. "Sublethal kanamycin induced cross resistance to functionally and structurally unrelated antibiotics." <i>Journal of Experimental Microbiology and Immunology</i> 13: 53-57.
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314	 Canadian General Standards Board, CAN/CGSB-32.311-2020. http://publications.gc.ca/collections/collection_2020/ongc-cgsb/P29-32-311-2020-eng.pdf CDC (Centers for Disease Control and Prevention, U.S. Department of Health and Human Services). 2013. Antibiotic resistance threats in the United States, 2013. April 23, 2013. Chen, L.X., S. He, C. Li et al. 2009. "Sublethal kanamycin induced cross resistance to functionally and structurally unrelated antibiotics." <i>Journal of Experimental Microbiology and Immunology</i> 13: 53-57. Culver, G.M. 2001. "Meanderings of the mRNA through the ribosome." <i>Structure</i> 9: 751-758. DuPont, T. 2019. Fire blight of apple and pear. Washington State University Extension. Original publication
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315	 Canadian General Standards Board, CAN/CGSB-32.311-2020. http://publications.gc.ca/collections/collection_2020/ongc-cgsb/P29-32-311-2020-eng.pdf CDC (Centers for Disease Control and Prevention, U.S. Department of Health and Human Services). 2013. Antibiotic resistance threats in the United States, 2013. April 23, 2013. Chen, L.X., S. He, C. Li et al. 2009. "Sublethal kanamycin induced cross resistance to functionally and structurally unrelated antibiotics." <i>Journal of Experimental Microbiology and Immunology</i> 13: 53-57. Culver, G.M. 2001. "Meanderings of the mRNA through the ribosome." <i>Structure</i> 9: 751-758. DuPont, T. 2019. Fire blight of apple and pear. Washington State University Extension. Original publication by Smith, T., D. Granatstein and K. Johnson. <u>http://s3-us-west-</u>
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314	 Canadian General Standards Board, CAN/CGSB-32.311-2020. http://publications.gc.ca/collections/collection_2020/ongc-cgsb/P29-32-311-2020-eng.pdf CDC (Centers for Disease Control and Prevention, U.S. Department of Health and Human Services). 2013. Antibiotic resistance threats in the United States, 2013. April 23, 2013. Chen, L.X., S. He, C. Li et al. 2009. "Sublethal kanamycin induced cross resistance to functionally and structurally unrelated antibiotics." <i>Journal of Experimental Microbiology and Immunology</i> 13: 53-57. Culver, G.M. 2001. "Meanderings of the mRNA through the ribosome." <i>Structure</i> 9: 751-758. DuPont, T. 2019. Fire blight of apple and pear. Washington State University Extension. Original publication by Smith, T., D. Granatstein and K. Johnson. <u>http://s3-us-west- 2.amazonaws.com/treefruit.wsu.edu/wp-content/uploads/2016/03/31090741/WSU-Fire-Blight-</u>
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317	 Canadian General Standards Board, CAN/CGSB-32.311-2020. http://publications.gc.ca/collections/collection_2020/ongc-cgsb/P29-32-311-2020-eng.pdf CDC (Centers for Disease Control and Prevention, U.S. Department of Health and Human Services). 2013. Antibiotic resistance threats in the United States, 2013. April 23, 2013. Chen, L.X., S. He, C. Li et al. 2009. "Sublethal kanamycin induced cross resistance to functionally and structurally unrelated antibiotics." <i>Journal of Experimental Microbiology and Immunology</i> 13: 53-57. Culver, G.M. 2001. "Meanderings of the mRNA through the ribosome." <i>Structure</i> 9: 751-758. DuPont, T. 2019. Fire blight of apple and pear. Washington State University Extension. Original publication by Smith, T., D. Granatstein and K. Johnson. <u>http://s3-us-west-</u>
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318	 Canadian General Standards Board, CAN/CGSB-32.311-2020. http://publications.gc.ca/collections/collection_2020/ongc-cgsb/P29-32-311-2020-eng.pdf CDC (Centers for Disease Control and Prevention, U.S. Department of Health and Human Services). 2013. Antibiotic resistance threats in the United States, 2013. April 23, 2013. Chen, L.X., S. He, C. Li et al. 2009. "Sublethal kanamycin induced cross resistance to functionally and structurally unrelated antibiotics." <i>Journal of Experimental Microbiology and Immunology</i> 13: 53-57. Culver, G.M. 2001. "Meanderings of the mRNA through the ribosome." <i>Structure</i> 9: 751-758. DuPont, T. 2019. Fire blight of apple and pear. Washington State University Extension. Original publication by Smith, T., D. Granatstein and K. Johnson. <u>http://s3-us-west-</u> 2.amazonaws.com/treefruit.wsu.edu/wp-content/uploads/2016/03/31090741/WSU-Fire-Blight- Factsheet-2019.04.01.pdf.
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317	 Canadian General Standards Board, CAN/CGSB-32.311-2020. http://publications.gc.ca/collections/collection_2020/ongc-cgsb/P29-32-311-2020-eng.pdf CDC (Centers for Disease Control and Prevention, U.S. Department of Health and Human Services). 2013. Antibiotic resistance threats in the United States, 2013. April 23, 2013. Chen, L.X., S. He, C. Li et al. 2009. "Sublethal kanamycin induced cross resistance to functionally and structurally unrelated antibiotics." <i>Journal of Experimental Microbiology and Immunology</i> 13: 53-57. Culver, G.M. 2001. "Meanderings of the mRNA through the ribosome." <i>Structure</i> 9: 751-758. DuPont, T. 2019. Fire blight of apple and pear. Washington State University Extension. Original publication by Smith, T., D. Granatstein and K. Johnson. <u>http://s3-us-west-</u> 2.amazonaws.com/treefruit.wsu.edu/wp-content/uploads/2016/03/31090741/WSU-Fire-Blight- Factsheet-2019.04.01.pdf. ECC (European Community Council). 2007. Council regulation (EC) No. 834/2007 of 28 June 2007. <i>Official</i>
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320	 Canadian General Standards Board, CAN/CGSB-32.311-2020. http://publications.gc.ca/collections/collection_2020/ongc-cgsb/P29-32-311-2020-eng.pdf CDC (Centers for Disease Control and Prevention, U.S. Department of Health and Human Services). 2013. Antibiotic resistance threats in the United States, 2013. April 23, 2013. Chen, L.X., S. He, C. Li et al. 2009. "Sublethal kanamycin induced cross resistance to functionally and structurally unrelated antibiotics." <i>Journal of Experimental Microbiology and Immunology</i> 13: 53-57. Culver, G.M. 2001. "Meanderings of the mRNA through the ribosome." <i>Structure</i> 9: 751-758. DuPont, T. 2019. Fire blight of apple and pear. Washington State University Extension. Original publication by Smith, T., D. Granatstein and K. Johnson. <u>http://s3-us-west-</u> 2.amazonaws.com/treefruit.wsu.edu/wp-content/uploads/2016/03/31090741/WSU-Fire-Blight- Factsheet-2019.04.01.pdf. ECC (European Community Council). 2007. Council regulation (EC) No. 834/2007 of 28 June 2007. <i>Official</i> <i>Journal of the European Union</i> 189: 1-23. <u>https://eur-lex.europa.eu/legal-</u>
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321	 Canadian General Standards Board, CAN/CGSB-32.311-2020. http://publications.gc.ca/collections/collection_2020/ongc-cgsb/P29-32-311-2020-eng.pdf CDC (Centers for Disease Control and Prevention, U.S. Department of Health and Human Services). 2013. Antibiotic resistance threats in the United States, 2013. April 23, 2013. Chen, L.X., S. He, C. Li et al. 2009. "Sublethal kanamycin induced cross resistance to functionally and structurally unrelated antibiotics." <i>Journal of Experimental Microbiology and Immunology</i> 13: 53-57. Culver, G.M. 2001. "Meanderings of the mRNA through the ribosome." <i>Structure</i> 9: 751-758. DuPont, T. 2019. Fire blight of apple and pear. Washington State University Extension. Original publication by Smith, T., D. Granatstein and K. Johnson. <u>http://s3-us-west-</u> 2.amazonaws.com/treefruit.wsu.edu/wp-content/uploads/2016/03/31090741/WSU-Fire-Blight- Factsheet-2019.04.01.pdf. ECC (European Community Council). 2007. Council regulation (EC) No. 834/2007 of 28 June 2007. <i>Official</i>
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322	 Canadian General Standards Board, CAN/CGSB-32.311-2020. http://publications.gc.ca/collections/collection_2020/ongc-cgsb/P29-32-311-2020-eng.pdf CDC (Centers for Disease Control and Prevention, U.S. Department of Health and Human Services). 2013. Antibiotic resistance threats in the United States, 2013. April 23, 2013. Chen, L.X., S. He, C. Li et al. 2009. "Sublethal kanamycin induced cross resistance to functionally and structurally unrelated antibiotics." <i>Journal of Experimental Microbiology and Immunology</i> 13: 53-57. Culver, G.M. 2001. "Meanderings of the mRNA through the ribosome." <i>Structure</i> 9: 751-758. DuPont, T. 2019. Fire blight of apple and pear. Washington State University Extension. Original publication by Smith, T., D. Granatstein and K. Johnson. <u>http://s3-us-west-</u> 2.amazonaws.com/treefruit.wsu.edu/wp-content/uploads/2016/03/31090741/WSU-Fire-Blight- Factsheet-2019.04.01.pdf. ECC (European Community Council). 2007. Council regulation (EC) No. 834/2007 of 28 June 2007. <i>Official Journal of the European Union</i> 189: 1-23. <u>https://eur-lex.europa.eu/legal- content/EN/TXT/PDF/?uri=CELEX:32007R0834&from=en</u>
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323	 Canadian General Standards Board, CAN/CGSB-32.311-2020. http://publications.gc.ca/collections/collection_2020/ongc-cgsb/P29-32-311-2020-eng.pdf CDC (Centers for Disease Control and Prevention, U.S. Department of Health and Human Services). 2013. Antibiotic resistance threats in the United States, 2013. April 23, 2013. Chen, L.X., S. He, C. Li et al. 2009. "Sublethal kanamycin induced cross resistance to functionally and structurally unrelated antibiotics." <i>Journal of Experimental Microbiology and Immunology</i> 13: 53-57. Culver, G.M. 2001. "Meanderings of the mRNA through the ribosome." <i>Structure</i> 9: 751-758. DuPont, T. 2019. Fire blight of apple and pear. Washington State University Extension. Original publication by Smith, T., D. Granatstein and K. Johnson. <u>http://s3-us-west-</u> 2.amazonaws.com/treefruit.wsu.edu/wp-content/uploads/2016/03/31090741/WSU-Fire-Blight- Factsheet-2019.04.01.pdf. ECC (European Community Council). 2007. Council regulation (EC) No. 834/2007 of 28 June 2007. <i>Official Journal of the European Union</i> 189: 1-23. <u>https://eur-lex.europa.eu/legal- content/EN/TXT/PDF/?uri=CELEX:32007R0834&from=en</u> –. 2008. Commission regulation (EC) No. 889/2008 of 5 September 2008. <i>Official J. Eur. Union</i> 250: 1-84.
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324	 Canadian General Standards Board, CAN/CGSB-32.311-2020. http://publications.gc.ca/collections/collection_2020/ongc-cgsb/P29-32-311-2020-eng.pdf CDC (Centers for Disease Control and Prevention, U.S. Department of Health and Human Services). 2013. Antibiotic resistance threats in the United States, 2013. April 23, 2013. Chen, L.X., S. He, C. Li et al. 2009. "Sublethal kanamycin induced cross resistance to functionally and structurally unrelated antibiotics." <i>Journal of Experimental Microbiology and Immunology</i> 13: 53-57. Culver, G.M. 2001. "Meanderings of the mRNA through the ribosome." <i>Structure</i> 9: 751-758. DuPont, T. 2019. Fire blight of apple and pear. Washington State University Extension. Original publication by Smith, T., D. Granatstein and K. Johnson. <u>http://s3-us-west-</u> 2.amazonaws.com/treefruit.wsu.edu/wp-content/uploads/2016/03/31090741/WSU-Fire-Blight- Factsheet-2019.04.01.pdf. ECC (European Community Council). 2007. Council regulation (EC) No. 834/2007 of 28 June 2007. <i>Official Journal of the European Union</i> 189: 1-23. <u>https://eur-lex.europa.eu/legal- content/EN/TXT/PDF/?uri=CELEX:32007R0834&from=en</u>
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325	 Canadian General Standards Board, CAN/CGSB-32.311-2020. http://publications.gc.ca/collections/collection_2020/ongc-cgsb/P29-32-311-2020-eng.pdf CDC (Centers for Disease Control and Prevention, U.S. Department of Health and Human Services). 2013. Antibiotic resistance threats in the United States, 2013. April 23, 2013. Chen, L.X., S. He, C. Li et al. 2009. "Sublethal kanamycin induced cross resistance to functionally and structurally unrelated antibiotics." <i>Journal of Experimental Microbiology and Immunology</i> 13: 53-57. Culver, G.M. 2001. "Meanderings of the mRNA through the ribosome." <i>Structure</i> 9: 751-758. DuPont, T. 2019. Fire blight of apple and pear. Washington State University Extension. Original publication by Smith, T., D. Granatstein and K. Johnson. <u>http://s3-us-west-</u> 2.amazonaws.com/treefruit.wsu.edu/wp-content/uploads/2016/03/31090741/WSU-Fire-Blight- Factsheet-2019.04.01.pdf. ECC (European Community Council). 2007. Council regulation (EC) No. 834/2007 of 28 June 2007. <i>Official Journal of the European Union</i> 189: 1-23. <u>https://eur-lex.europa.eu/legal-</u> content/EN/TXT/PDF/?uri=CELEX:32007R0834&from=en 2008. Commission regulation (EC) No. 889/2008 of 5 September 2008. <i>Official J. Eur. Union</i> 250: 1-84. <u>https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:250:0001:0084:EN:PDF</u>
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326	 Canadian General Standards Board, CAN/CGSB-32.311-2020. http://publications.gc.ca/collections/collection_2020/ongc-cgsb/P29-32-311-2020-eng.pdf CDC (Centers for Disease Control and Prevention, U.S. Department of Health and Human Services). 2013. Antibiotic resistance threats in the United States, 2013. April 23, 2013. Chen, L.X., S. He, C. Li et al. 2009. "Sublethal kanamycin induced cross resistance to functionally and structurally unrelated antibiotics." <i>Journal of Experimental Microbiology and Immunology</i> 13: 53-57. Culver, G.M. 2001. "Meanderings of the mRNA through the ribosome." <i>Structure</i> 9: 751-758. DuPont, T. 2019. Fire blight of apple and pear. Washington State University Extension. Original publication by Smith, T., D. Granatstein and K. Johnson. <u>http://s3-us-west-</u> 2.amazonaws.com/treefruit.wsu.edu/wp-content/uploads/2016/03/31090741/WSU-Fire-Blight- Factsheet-2019.04.01.pdf. ECC (European Community Council). 2007. Council regulation (EC) No. 834/2007 of 28 June 2007. <i>Official Journal of the European Union</i> 189: 1-23. <u>https://eur-lex.europa.eu/legal- content/EN/TXT/PDF/?uri=CELEX:32007R0834&from=en</u> –. 2008. Commission regulation (EC) No. 889/2008 of 5 September 2008. <i>Official J. Eur. Union</i> 250: 1-84. <u>https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:250:0001:0084:EN:PDF</u> Elkins, R.B., T.N. Temple, C.A Shaffer et al. 2015. "Evaluation of dormant stage inoculum sanitation as a
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325	 Canadian General Standards Board, CAN/CGSB-32.311-2020. http://publications.gc.ca/collections/collection_2020/ongc-cgsb/P29-32-311-2020-eng.pdf CDC (Centers for Disease Control and Prevention, U.S. Department of Health and Human Services). 2013. Antibiotic resistance threats in the United States, 2013. April 23, 2013. Chen, L.X., S. He, C. Li et al. 2009. "Sublethal kanamycin induced cross resistance to functionally and structurally unrelated antibiotics." <i>Journal of Experimental Microbiology and Immunology</i> 13: 53-57. Culver, G.M. 2001. "Meanderings of the mRNA through the ribosome." <i>Structure</i> 9: 751-758. DuPont, T. 2019. Fire blight of apple and pear. Washington State University Extension. Original publication by Smith, T., D. Granatstein and K. Johnson. <u>http://s3-us-west-</u> 2.amazonaws.com/treefruit.wsu.edu/wp-content/uploads/2016/03/31090741/WSU-Fire-Blight- Factsheet-2019.04.01.pdf. ECC (European Community Council). 2007. Council regulation (EC) No. 834/2007 of 28 June 2007. <i>Official Journal of the European Union</i> 189: 1-23. <u>https://eur-lex.europa.eu/legal-</u> content/EN/TXT/PDF/?uri=CELEX:32007R0834&from=en 2008. Commission regulation (EC) No. 889/2008 of 5 September 2008. <i>Official J. Eur. Union</i> 250: 1-84. <u>https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:250:0001:0084:EN:PDF</u>

1329	
1330	Fed Reg (Federal Register). 2014. Kasugamycin: Pesticide Tolerances. Final Rule. Federal Register 79(168):
1331	51492-51497. August 29, 2014.
1332	
1333	Forster, H., G.C. McGhee, G.W. Sundin et al. 2015. "Characterization of streptomycin resistance in isolates
1334	of Erwinia amylovora in California." Phytopathology 105: 1302-1310.
	of Erwinia amytooora in Camorina. Phytopathology 105: 1502-1510.
1335	
1336	Ge, Y., J.H. Lee, B. Hu et al. 2018. "Loss of function mutations in the Dpp and Opp permeases render
1337	Erwinia amylovora resistant to kasugamycin and blasticidin S." Molecular Plant Microbe Interactions
1338	31(8): 823-832.
1339	
1340	Gilleland, L.B., H.E. Gilleland, J.A. Gibson et al. 1989. "Adaptive resistance to aminoglycoside antibiotics in
1341	Pseudomonas aeruginosa." Journal of Medical Microbiology 29: 41-50.
1342	
1343	Granatstein, D. and E. Kirby. 2019. Recent trends in organic certified tree fruit. Organic trend series, Center for
1344	Sustainable Agriculture and Natural Resources, Washington State University, Wenatchee, WA. p.
1345	18 of 81. <u>http://tfrec.cahnrs.wsu.edu/organicag/wp-</u>
1346	content/uploads/sites/9/2019/04/WA_OrgTreeFruit_ann_rev2018.pdf.
1340	content/upioads/sites/ // 2019/04/ WA_Org11eerrun_ann_rev2010.pdr.
	Hannada M. T. Hashimata T. Talahashi 1005 "Antincianshial activity of heavy comparis" Jaurus of
1348	Hamada, M., T. Hashimoto, T. Takahashi. 1965. "Antimicrobial activity of kasugamycin." <i>Journal of</i>
1349	Antibiotics Ser. A. 18: 104-106 (cited in Masukawa 1968).
1350	
1351	Hampson, C. and K. Bedford. 2011. "Efficacy of blossom thinning treatments to reduce fruit set and
1352	increase fruit size of Ambrosia and Aurora Golden Gala apples." Canadian Journal of Plant Science
1353	91: 983-990.
1354	
1355	Houang, E.T. and D. Greenwood. 1977. "Aminoglycoside cross-resistance patterns of gentamicin-resistant
1356	bacteria. Journal of Clinical Pathology." 30: 738-744
1357	
1358	Huang, CY., CH. Ho, CJ. Lin et al. 2010. "Exposure effect of fungicide kasugamycin on bacterial
1359	community in natural river sediment." Journal of Environmental Science and Health, Part B. 45(5): 485-
1360	491.
1361	
1362	IFOAM (International Federation of Organic Agriculture Movements). 2014. IFOAM Norms for Organic
1363	Production and Processing. IFOAM Organics International, Bonn, Germany.
1363	
	http://www.ifoam.bio/en/ifoam-norms.
1365	
1366	Japan (Ministry of Agriculture, Forestry, and Fisheries). 2017. Japanese Agricultural Standard for Organic
1367	Plants. Notification 1605 of the Ministry of Agriculture, Forestry, and Fisheries. Revised March 27,
1368	2017. <u>https://www.maff.go.jp/e/policies/standard/jas/specific/attach/pdf/criteria_o-1.pdf.</u>
1369	Johnson, K.B., T.L. Sawyer, V.O. Stockwell et al. 2009. "Implications of pathogenesis by Erwinia amylovora
1370	on rosaceous stigmas to biological control of fire blight." Phytopathology 99: 128-138.
1371	
1372	Johnson, K.B. and V.O. Stockwell. 1998. "Management of fire blight: a case study in microbial ecology."
1373	Annu. Rev. Phytopathology 36: 227-248.
1374	
1375	Johnson, K.B., V.O. Stockwell, R.J. McLaughlin et al. 1993. "Effect of antagonistic bacteria on establishment
1376	of honey bee-dispersed <i>Erwinia amylovora</i> in pear blossoms and on fire blight control."
1377	Phytopathology 83: 995-1002.
1378	
1379	Johnson, K.B., V.O. Stockwell and T.L. Sawyer. 2004. "Adaptation of fire blight forecasting to optimize the
1380	use of biological controls." Plant Disease 88: 41-88.
1381	
TOOT	

	Technical Evaluation Report	Kasugamycin	Crops
1382	Johnson, K.B., V.O. Stockwell, T.L.	Sawyer et al. 2000 "Assessment of enviro	onmental factors influencing
1383	Johnson, K.B., V.O. Stockwell, T.L. Sawyer et al. 2000. "Assessment of environmental factors influencing growth and spread of <i>Pantoea agglomerans</i> on and among blossoms of pear and apple."		
1384	Phytopathology 90: 1285-12		si pear and apple.
	Fnytoputhology 90. 1265-12	74.	
1385			
1386		T.N. Temple. 2008. "Evaluation of kasuga	
1387	integrated biological and o	chemical strategy for suppression of bloss	om blight." Acta Horticulturae
1388	793:439-444.		
1389			
1390	Johnson, K.B. and T.N. Temple. 20	13. "Evaluation of strategies for fire blight	t control in organic pome fruit
1391	without antibiotics." Plant	Disease. 97: 402-409.	0
1392			
1393	– 2016. "Comparison of methods	of acibenzolar-S-methyl application for fi	ire blight suppression in pear
1394	and apple." Plant Disease 1	7 11	
1395	und apple. I tunt Diotuse I		
1396	2017 "Induction of systemic ac	equired resistance aids restoration of tree h	health in field-grown pear and
	5	1	leann in neid-grown pear and
1397	apple diseased with fire b.	light." Plant Disease 101: 1263-1268.	
1398			
1399		013. "Sensitivity of <i>Ewinia amylovora</i> in Illi	
1400	streptomycin, oxytetracyc	line, kasugamycin, and copper." Plant Dis	sease 97: 1484-1490.
1401			
1402		ricide Safety Data Sheet. Arysta Life Scien	.ce, Dublin, OH. May 22, 2015.
1403	Revised June 17, 2015.		
1404			
1405	Levitan, A.A. 1967. "In vitro antiba	acterial activity of kasugamycin." Applied	Microbiology 15(4): 750-753.
1406			
1407	Livermore, D. 2002. "Multiple med	chanisms of antimicrobial resistance in <i>Pse</i>	eudomonas aeruginosa: Our worst
1408	nightmare?" Clinical Infect		0
1409			
1410	Masukawa H. N. Tanaka and H.	Umezawa. 1968. "Inhibition by kasugamy	cin of protein synthesis in
1411		of Antibiotics Ser. A 21(1): 73-74.	ent of protent synthesis in
1412	1 yricaiaria oryzae. Joarnia	0) 111110101105 501. 11 21(1). 15 74.	
1412	Mayon Stein K C V Ha P Ham	merschmidt et al. 2002. "Effect of treating	apple trees with acidemicalar S
1414		expression of pathogenesis related protein	i genes. Plunt Disease 86: 785-
1415	790.		
1416			
1417		lomo et al. 2011. "Genetic analysis of strep	5
1418	1 00	ests that dissemination of two genotypes is	-
1419	distribution of SM ^R E. amy	llovora in Michigan." Phytopathology 101: 18	82-191.
1420			
1421	McGhee, G.C. and G.W. Sundin. 2	011. "Evaluation of kasugamycin for fire b	olight management and effect
1422	on non-target bacteria, and	d assessment of kasugamycin resistance p	otential in <i>Erwinia amylovora."</i>
1423	Phytopathology 101: 192-20	4.	-
1424	5 1 85		
1425	McManus, P.S., V.O. Stockwell, G.	W. Sundin et al. 2002. "Antibiotic use in p	plant agriculture." Annual
1426	Review of Phytopathology 4	-	
1427	neelee of inglopulletogy i	. 110 100.	
1428	Mittal I W A Szmczak I A Pirc	ofski et al. 2018. Fungemeia caused by Aur	where it is a patient
1420		ě i	, 1
	with advanced ADS. a ca	se report and review of the medical literat	ure. Jiviivi Cuse Reports 2018. 5.
1430			
1431		ldwinckle. 2003. "Fire blight management	t in the twenty-first century."
1432	Plant Disease 87(7): 756-765).	
1433			
1434	· ·	of Environmental Conservation). 2015. Re	0
1435	-	Reg. No.66330-404) which contains the ne	ę
1436	kasugamycin (Chemical C	Code: 230001). Division Materials Manager	nent, Product Registration
		C C	-

	Technical Evaluation Report	Kasugamycin	Crops
137 138		/ork. http://pmep.cce.cornell.edu/profiles/fu lfur/kasugamycin/kasugamycin_reg_0115.pd	
139 140 141 142 143	0	, spread, and environmental effect of antimicro e can increase resistance to any antimicrobial a uppl 3): S78-S84.	
44 45	Pfeiffer, D.G. 2017. Commercial a Virginia University, Ur	<i>tree fruit spray bulletin</i> . Cooperative Extensions on iversity of Maryland.	of Virginia Tech, West
146 147 148 149 150	Health, National Librar	Medicine, PubChem Database). 2020a. Kasugar ry of Medicine, National Center for Biotechnolc <u>nlm.nih.gov/compound/Kasugamycin.</u>	
51 52 53	National Center for Bio	chloride. National Institutes of Health, Nationa stechnology Information. nlm.nih.gov/compound/Kasugamycin-hydro	
54 55 56	Quarles, W. 2013. New biopesti	cides for IPM and organic production. IPM Pra	actitioner 33(7/8): 1-10.
50 57 58 59 50	altered periplasmic olig	sta. 1999. "Spontaneous kanamycin resistant <i>Es</i> gopeptide permease protein (OPPA) and imper <i>ista de Microbiologica</i> 30: 153-156.	
51 52 53 54	quinolones, beta-lactan	, R.V. Goering et al. 1984. "Selection of multiple ns, and aminoglycosides with special reference " <i>Antimicrobial Agents Chemotherapy</i> 26(6): 797-8	to cross resistance between
65 6	8	ei, et al. 2013. "Enhanced antibiotic multi-resista ral use of streptomycin." <i>Environmental Microbi</i>	
7 8 9 0		Iau et al. 2006. "Structural analysis of kasugam <i>uctural Molecular Biology</i> 13(10): 879-886.	ycin inhibition of
1 2 3 4		Lo. 2010. "Analysis of the antibiotic fungicide k ance liquid chromatography." <i>Journal of Environ</i>	
5		itikos et al. 2016. "A chemical-genomic screen c of kasugamycin and blasticidin S." <i>PLOS Genel</i>	0
7 8 9 0	Smith, D.L., J. Dushoff, J.G. Mo 2(8): e232.	rris, Jr. 2005. "Agricultural antibiotics and hum	an health." PLoS Medicine
0 1 2 3	Stockwell, V.O. 2014. "Overview Horticulturae 1056: 39-4	w of concerns surrounding antibiotic use for co 2.	ntrol of fire blight." Acta
5 4 5 6	Stockwell, V.O. and B. Duffy. 2 199-210.	012. "Use of antibiotics in agriculture." <i>Rev. Sci</i>	. Tech. Off. Int. Epiz. 31(1):
87 88 89 90		nd J.E. Loper. 1998. "Establishment of bacterial apple blossoms as influenced by inoculum prep	

1491 1492 1493	Stockwell, V.O., K.B. Johnson, D. Sugar et al. 2011. "Mechanistically compatible mixtures of bacterial antagonists improve biological control of fire blight of pear." <i>Phytopathology</i> 101: 113-123.
1494 1495 1496	Stockwell, V.O., T.N. Temple, K.B. Johnson et al. 2008. "Integrated control of fire blight with antagonists and oxytetracycline." <i>Acta Horticulturae</i> 793: 383-390.
1497 1498	Sundin, G.W. 2002. "Distinct recent lineages of the straA-straB streptomycin resistance genes in clinical and environmental bacteria." <i>Current Microbiology</i> 45(1): 63-69.
1499 1500 1501 1502	– . 2014. Managing fire blight: lessons learned from the use of Kasumin for blossom blight and Apogee for shoot blight control. New York Fruit Quarterly 22(2): 9-14. Summer 2014.
1503 1504 1505 1506	Sundin, G.W. and C.L. Bender. 1996. "Dissemination of the strA-strB streptomycin resistance genes among commensal and pathogenic bacteria from humans, animals, and plants." <i>Molecular Ecology</i> 5: 133- 143.
1507 1508	Sundin, G.W., N.A. Werner, K.S. Yoder et al. 2009. "Field evaluation of biological control of fire blight in the Eastern United States." <i>Plant Disease</i> 93: 386-394.
1509 1510 1511 1512	Takeuchi, T., M. Ishizuka, H. Takyama et al. 1965. "Pharmacology of kasugamycin and the effect on Pseudomonas infection." <i>Journal of Antibiotics Ser. A</i> 18: 107-110. (Cited in Masukawa 1968).
1512 1513 1514 1515	Tamamura, T. and K. Sato. 1999. "Comparative studies on in vitro activities of kasugamycin and clinically used aminoglycoside antibiotics." <i>Japanese Journal of Antibiotics</i> 52(1): 57-67.
1516 1517	Tancos, K.A. and K.D. Cox. 2017. "Effects of consecutive streptomycin and kasugamycin applications on epiphytic bacteria in the apple phyllosphere." <i>Plant Disease</i> 101: 158-164.
1518 1519 1520	Tominaga, A. and Y. Kobayashi. 1978. "Kasugamycin-resistant mutants of <i>Bacillus subtilis</i> ." Journal of Bacteriology 135(3): 1149-1150.
1521 1522 1523	Tsukamoto, N., Y. Ohkoshi, T. Okubo et al. 2013. "High prevalence of cross-resistance to aminoglycosides in fluoroquinolone resistant E. coli clinical isolates." <i>Chemotherapy</i> 59: 379-384.
1524 1525 1526	Umezawa, H., Y. Okami, T. Hashimoto et al. 1965. "A new antibiotic, kasugamycin." <i>Journal of Antibiotics Ser. A</i> . 18:101-103. (cited in Masukawa 1968).
1527 1528 1529	Umezawa, H., Y. Okami, T. Takeuchi et al. 1974. Kasugamycin as a plant disease preventive agent. U.S. Patent No. 3,856,969. December 24, 1974.
1530 1531 1532 1533	Umezawa, H., T. Takeuchi and M. Hamada. 1971. Process for production of kasugamycin. U.S. Patent No. 3,607,657. September 21, 1971.
1534 1535 1536	Umezawa, H., T. Takeuchi and M. Hamada et al. 1967. Antibiotic kasugamycin. U.S. Patent No. 3,358,001. December 12, 1967.
1537 1538 1539	USDA (United States Department of Agriculture, National Organic Program). 2011. Technical Evaluation Report. Copper Sulfate and other Copper Products. https://www.ams.usda.gov/sites/default/files/media/Coppers%20fixed%20TR%202011.pdf.
1540 1541 1542 1543	—. 2014. Petition to remove the expiration date for streptomycin. May 2, 2014. <u>https://www.ams.usda.gov/sites/default/files/media/Streptomycin%20Formal%20Rec%20.pdf.</u>

	Technical Evaluation Report	Kasugamycin	Crops
1544 1545		e. Decision tree for classification of materials a.gov/sites/default/files/media/NOP-Synt	
1546 1547	DecisionTree.pdf.		
1548 1549 1550	· ·	ent of Agriculture, Pesticide Data Program). 7. 3, 2020, most recent residue data is from 20 <u>a.gov/datasets/pdp</u> .	
1551 1552 1553 1554		nmental Protection Agency). 2004. List 4A, M odated August 2004. <u>https://www.epa.gov/</u> list4aname.pdf.	
1555 1556 1557 1558 1559	September 2005.	e fact sheet. Office of Prevention, Pesticides, v/pesticides/chem_search/reg_actions/regi	
1560 1561 1562 1563	for the Section 3 registr vegetables, pome fruit,		se of the fungicide on fruiting
1564 1565	U.S. EPA, Office of Chemical Sa	afety and Pollution Prevention. July 13, 2012.	
1566 1567 1568	kasugamycin. M. Pang	d ecological risk assessment for registration er and T. Coleman, eds. Environmental Prote vironmental Fate and Effects Division.	
1569 1570 1571 1572	Environmental Protect	gistration of kasugamycin technical, EPA Region Agency, September 8, 2014. 7/pesticides/chem_search/ppls/066330-004	-
1573 1574 1575 1576		nin 2L (2% kasugamycin), Reg. No. 66330-404 rch 1, 2018. <u>https://www3.epa.gov/pesticid</u>	
1577 1578 1579 1580	Protection Agency, Jan	nin 4L (4% kasugamycin), Reg. No. 66330-43 uary 15, 2020. v/pesticides/chem_search/ppls/066330-004	
1581 1582 1583	– . 2020b. Label for Spinosad S 24, 2020.	C ML. EPA Reg. No. 62719-748. Dow Agrosc	iences, Indianapolis, IN. June
1584 1585 1586 1587	5	Balogh et al. 2010. "Comparison of kasugam bacterial spot on tomato." <i>HortScience</i> 45(12)	
1588 1589 1590		nders, J.M. van Niekerk et al. 2016. "Dissemin ecosystems through horizontal gene transfer	
1591 1592 1593 1594	and vegetables using li	2017. "Simultaneous analysis of kasugamcy quid chromatography-tandem mass spectron <i>ytical Methods</i> 9: article 634.	
1595 1596 1597 1598	Labelling and Marketing	tion). 2007. Codex Alimentarius, Guidelines for of Organically Produced Foods, GL 32-1999, Th mme, Rome, Italy. <u>http://www.fao.org/3/a</u>	ird Edition. Joint FAO/WHO

1599	
1600	Yashiro, E. and P.S McManus. 2012. "Effect of streptomycin treatment on bacterial community structure in
1601	the apple phyllosphere." PLoS ONE 7(5): e37131.
1602	
1603	Yoshii, A., H. Moriyama and T. Fukuhara. 2012. "The novel kasugamycin 2'-N-acetyltransferase gene
1604	aac(2')-IIa, carried by the IncP Island, confers kasugamycin resistance to rice pathogenic bacteria."
1605	Applied and Environmental Microbiology 78(16): 5555-5564.